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a b s t r a c t

Over the last few years, the deep neural network is utilized to solve the collaborative filtering problem,
a method of which has achieved immense success on computer vision, speech recognition as well
as natural language processing. On one hand, the deep neural network can be used to capture the
side information of users and items. On the other hand, it is also capable of modeling interactions
between users and items. Most of existing approaches exploit the neural network with solo structure
to model user–item interactions such that the learning representation may be insufficient over the
extremely sparse rating data. Recently, a large number of neural networks with mixed structures are
devised for learning better representations. A carefully designed hybrid network is able to achieve
considerable accuracy but only requires a small amount of extra computation. In order to model user–
item interactions, we elaborate a hybrid neural network consisting of the global neural network and
several local neural blocks. The multi-layer perceptron is adopted to build the global neural network
and the residual network is used to form the local neural block which is inserted into two adjacent
global layers. The hybrid network is further combined with the generalized matrix factorization
to capture both the linear and nonlinear relationships between users and items. It is verified by
experimental results on benchmark datasets that our method is superior to certain state-of-the-art
approaches in terms of top-n item recommendation.

© 2021 Elsevier B.V. All rights reserved.
o

1. Introduction

Owing to the rapid growth and prevalence of Internet, users
re confronted with abundant online contents (e.g. movies, books
nd music), which makes it very time-consuming to select the
eeded information. This is often referred to as the information
verload problem. In order to fulfill the needs of personalized
ervices, recommender systems are widely studied and applied
o online systems [1] which have achieved success in plenty of
amous companies such as Netflix, Amazon and YouTube [1–3]. It
s reported that 80 percent of movies watched by Netflix users
ome from the recommendation engine [3] and more than 60
ercent of video clicks are from home page recommendations in
ouTube [2].
Improving the accuracy of the algorithm is always challenged

n the field of collaborative filtering. The key to resolve this issue
ies in establishing an accurate model to describe the interactions
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between users and items [4]. To accomplish such objective, the
matrix factorization method jointly maps users and items into
a latent space and calculates the predictive score by the inner
product of the latent vector of user and item [5]. The matrix
factorization can be considered as a linear model and a recent
study reveals that both the linear and nonlinear relationships
between users and items should be taken into account [6]. A
natural way to capture these nonlinear relationships is employing
the neural network which incorporates the activation function for
learning the nonlinear representation.

Since the interaction matrix is fairly sparse, the embedding
layer is applied to turn the sparse representation into low di-
mensional dense vector. Then the embedding vectors of users and
items are concatenated and fed into a fully connected neural net-
work. The deep neural network needs a large amount of data to
train layer weights (edges in network) [7,8], but the rating data is
extremely sparse, which may decline the representation learning
ability of neural networks. In order to manifest this issue, we plot
the weight of the last layer. The predictive scores of items can
be calculated via the last layer of the network (the output layer),
namely ŷ = aout (hT z+b), where aout is the activation function and
z is the output vector, which is determined by the input and the
structure of the network. h is the weight vector w.r.t the neurons
f the output layer, which is learnt from the data automatically.
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e plot the absolute value of h and the result is presented
n Fig. 1 where the left subfigure represents a solo multi-layer
erceptron (MLP) modeling interactions between users and items
nd the absolute value of h is given in the right. One can see
hat the weights are mainly centralized in the interval of 0 to
.1. If weights are too centralized (close to 0), predictive scores
f various items could be quite close, which may bring a negative
mpact on the accuracy of item recommendations.

The majority of existing recommendation algorithms adopt
he plain neural network (as depicted in the left of Fig. 1) to cal-
ulate the final predictive scores and plenty of experiments have
hown its superiority of representation learning ability [6,9–11].
owever, recent researches indicate that the network-in-network
rchitecture is beneficial to improving the representation learning
bility [12–14]. For example, Qu et al. [14] made use of micro
etworks as kernel functions to augment the nonlinearity of the
hole network. The hybrid network is one kind of the network-

n-network architecture and used to predict the Click-Through
ate (CTR). The attention network can be considered as another
ind of network-in-network architectures. Recently, it is used to
etermine the importance of parameters in the model [9,15]. In
hese method, the final predictive scores are obtained by the solo
LP. As discussed above, the predictive scores obtained by the
lain neural network may be centralized, which could undermine
he performance of the algorithm.

Encouraged by recent advances in collaborative filtering and
nspired by recent successes in exploring mixed networks for rep-
esentation learning, we propose a hybrid neural network which
s one kind of ‘‘network-in-network" structure. Our objective is
o enhance the representation learning ability of the network via
ixed structures. The traditional MLP is adopted to construct

he global neural network and the residual network is utilized
o form the local neural block, which can be considered as re-
apping functions projecting the output of the global layer into
variety of dimensional space. The output of a local neural block

s then re-fed into the next global layer. The local neural block is
uilt by the residual neural network which learns how to change
he input instead of learning what the output should be (using
hortcut connections) [16]. Choosing the residual network is due
o the following two reasons. Firstly, it is proved to have excellent
eneralization performance on recognition tasks. Secondly and
ore importantly, adopting a different structure from the global
eural network (MLP) is capable of improving the diversity of the
hole network.
In summary, the main contributions of our work are as fol-

ows:

1. We devise a hybrid neural network to model user–item
interactions. The depth of the network is increased by in-
serting a few of neural blocks from the localization. Mixed
structures are exploited such that the information uncov-
ered by our method is more diverse than the information
obtained by solo MLP.

2. We study the weight distribution of the last layer and
visualize the output vector. The results demonstrate that
the layer weights of our hybrid network distribute more
diversely than solo MLP, which indicates that the represen-
tation learning ability of the network is enhanced by our
method.

3. We compare our method with certain state-of-the-art rec-
ommendation approaches, and the experimental results
verify that our method outperforms baseline approaches in
terms of top-n item recommendation.
2

2. Related works

We employ a hybrid neural network to model user–item in-
teractions. In this section, we firstly review some traditional deep
learning based recommendation approaches which mainly adopt
plain neural network to capture user–item interactions. Secondly,
recent development on neural networks with mixed structures
are summarized.

2.1. Collaborative filtering with the solo neural network

The application of deep learning methods to the task of collab-
orative filtering attracts enormous attention in recent years [7,17,
18]. Salakhutdinov et al. [17] firstly introduced a class of two-
layer undirected graphical models, Restricted Boltzmann Ma-
chines (RBM), to model the data of individual ratings. Authors
further linearly combined multiple RBM models with multiple
SVD models to enhance the performance of the separated model.
Since the deep learning techniques achieve tremendous success
in computer vision, speech recognition and textual analysis, they
are exploited to learn features from audio and text content in
the recommender system. Then the probabilistic matrix factor-
ization is combined with these deep learning models to generate
recommendation for users [18–20].

The recommendation can be considered to be the match be-
tween the user’s preference and the item’s feature. For instance,
the matrix factorization maps users and items into a joint latent
space and calculates their predictive scores by the inner product
of the latent vector of user and item [5]. Thus, it is natural to build
a dual network for modeling the two-way interaction between
users and items. In many online systems, it is not so easy to gather
individual explicit ratings and thus it might be more practical to
infer users’ preferences through their implicit feedbacks. With the
implicit feedbacks, the neural networks can be used to model
the nonlinear relationships between users and items and the
linear relationship can be captured by the linear models such
as linear regression and the matrix factorization [6,7]. Recent
researches show that the neural networks are able to model both
the explicit and implicit feedbacks simultaneously by combining
the point-wise loss and the pair-wise loss [10,11]. For these
approaches, the plain neural network is used to compute the
final predictive scores. Despite these methods achieve consid-
erable recommendation accuracy, their representation learning
ability can be further improved by using networks with mixed
structures [14].

2.2. Collaborative filtering via network-in-network architecture

The network-in-network architecture was initially introduced
in Ref. [12], wherein the generalized linear model in convolu-
tional neural network (CNN) is replaced by a ‘‘micro network".
It is revealed by recent works that such hybrid structure is ca-
pable of learning better representations [13,21]. The network-
in-network architectures have a variety of forms such as the
inception networks and the attention networks [15,22–24]. The
Inception model aggregates outputs of several convolutional lay-
ers, method of which is mainly applicable to computer vision [22].
The attention network is built from the localization which equips
a neural network with the capability to focus on a subset of its
inputs (or features). The attention network has diverse architec-
tures due to the applications and it is recently introduced to solve
the collaborative filtering task.

He et al. [15] took a multi-layer perception as the attention
network to learn contributions of an item for the top-n item
recommendation. Furthermore, Xue et al. [9] extends the method

by accounting for the nonlinear and higher-order relationship
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Fig. 1. Weight distribution of the output layer of MLP on MovieLens dataset.
mong items. More specifically, the interactions among all inter-
cted items are considered by such method, whereas a number
f existing methods only take into account the second-order
nteractions (e.g. similarity) between two items. Tay et al. [24]
ook advantage of the attention mechanism over an augmented
emory network to learn latent relation describing each user and

tem interaction. In recent, the inception model is combined with
he attention fusion mechanism to improve the quality of news
ecommendations, method of which is capable of learning user
eatures, item features as well as context features synchronously.
he semantic information is learnt from the reviews and articles
y the attention network to boost the accuracy of recommender
ystems [25,26].

.3. Limitations of related works

During the past few years, the network-in-network architec-
ure was introduced in recommender systems. However, from
he reviewed literatures, it can be seen that most of the efforts
re devoted to exploit the attention network to extract features
rom the data. Qu et al. [14] used a micro-network as the kernel
unction to manipulate the embedding vectors and utilized a
lain neural network as the classifier. Moreover, such method
esolve the task of CTR estimation and therefore it is different
rom our method. A lot of neural networks with mixed structures
re proposed to learn better representations in recent years. A
arefully designed hybrid network is able to significantly en-
ance the accuracy while only a little of extra computation is
equired [13,22,23,27]. These network-in-network architectures
ave achieved tremendous success in both computer vision and
ollaborative filtering [14,15,25]. Inspired by recent successes
n exploring mixed neural networks for representation learning,
e propose a hybrid network to solve the task of top-n item
ecommendations.

. Preliminaries

Lots of recommendation approaches stand on the assumption
hat users’ explicit ratings are available [5]. Actually it is not so
asy to obtain explicit ratings from users. Thus, it might be more
ractical to derive user preferences from their implicit feedbacks,
uch as users’ clicking and interaction record [28]. It is worth
oting that the individual implicit feedback may be not binary.
or example, a user purchases an item multiple times. In this
aper, we define the interaction matrix Y as: y = 1 if user u
M×N ui

3

has at least one interaction with item i and yui = 0 indicates that
there is no observational link between user u and item i. M and
N are the number of users and items, respectively.

If the recommendation is considered as a two-way interaction
between the user’s preferences and the item’s properties, a neural
network can be built to model their interactions. In respect that
the interaction matrix is extremely sparse, the embedding layer
is taken into consideration to transform the sparse representa-
tion into a dense vector. Thereby, the bottom of the network is
constituted of input layer and embedding layer. The input layer is
composed of two feature vector vu and oi, which respectively rep-
resent user u and item i. The embedding layer is a fully connected
layer and the obtained embedding vector can be regarded as the
latent vector in the context of the latent factor model [6]. The user
and item embedding vector are then concatenated and fed into
a multi-layer perceptron to map the user’s and item’s feature to
predictive score. The final output is the predictive score ŷui and
the training process is performed by minimizing the pointwise
loss between ŷui and its target value yui.

The above procedure can be formulated as:

ŷui = φout (φX (...φ2(φ1(PTvu,QToi))...)), (1)

where P ∈ RM×K and Q ∈ RN×K represent the latent factor matrix
for users and items, respectively. We define the embedding vector
pu = PTvu w.r.t user u and qi = QToi for item i which are op-
timized by the back propagation method. φout and φx separately
denote the mapping function for the output layer and x-th neural
layer, and there are X hidden layers in total.

4. Our proposed model

In this section, we mainly discuss our method, the Heteroge-
neous Neural Collaborative Filtering (HNCF for short), wherein the
neural network is constructed by heterogeneous networks.

4.1. Heterogeneous neural collaborative filtering

The solo MLP has considerable learning representation and its
feature learning ability can be further improved by the network-
in-network architecture indicated by recent researches. The hy-
brid architecture brings extra computations and hence the struc-
ture should not be too complex. In addition, the mixed structures
should improve the representation learning power to enhance
the accuracy of item recommendation. Due to these concerns, we
elaborate the neural network similar to the approach in [12]. Our
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Fig. 2. The architecture of our method. The deep residual neural network is
hosen for illustration.

ybrid neural network is comprised of a global neural network
nd several local neural blocks. The global neural network is
onstructed by the traditional MLP and we adopt two structures
o build the local neural block: traditional MLP and deep residual
eural network [16]. In the model, the global layer and local
lock are placed alternatively. More specifically, the local neural
lock is inserted into two adjacent global layers. The output of a
lobal layer is transformed to the input of a local neural block
nd the output of the local block is then re-fed to the next
lobal layer. On one hand, the local neural block is capable of
ugmenting nonlinearity of the whole network [12]. On the other
and, heterogeneous networks are able to increase the diversity
f the network.
We make use of the method in [6] to train the network. The

ottom of the network is composed of input layer and embedding
ayer. The user and the item embedding vector are then concate-
ated and fed into the hybrid neural network. In a similar way,
he output is the predictive score ŷui. By calculating the point-
ise loss between ŷui and its target value yui, we can train the
arameters in the network through the back propagation.
By combining the idea of Ref. [12] and [6], the predictive score

an be formulated as follow:

ˆui = φout (ΦL
X (φ

G
X ...(ΦL

1(φ
G
1 (P

Tvu,QToi)))...)), (2)

where φout is the mapping function for the output layer and φG
x

denotes the mapping function for the x-th global neural layer. ΦL
x

represents a series of mapping functions in the x-th local neural
block, which can be formulated as:

ΦL
x (yx) = φL

x,Z (...φ
L
x,2(φ

L
x,1(yx))...), (3)

where φL
x,z represents the mapping function for the z-th layer in

the x-th local neural block, and there are Z hidden layers in the
lock. yx in Eq. (3) is the output of the x-th global layer and it is
irectly fed into the first layer of the x-th local block. In Ref. [12],
he generalized linear model is replaced by a MLP (the micro
etwork). The input data is directly fed into the micro network.
n our method, the input is firstly fed into the global network,
nd then the output of each global layer is taken as the input for
he local block. Finally, the output of the local block is fed into
he next global layer. Our method is different from methods in
ef. [12] and [6]. The architecture of our network is given in Fig. 2.
Intuitively, the computation of the predictive score is a regres-

ion problem. The data we used is implicit feedback of users and
e changed the data into binary forms. Thus, we address the item
ecommendation with implicit feedback as a binary classification
4

problem. For classification, if it is a binary (2-class) problem, then
the cross-entropy error function often does better [29].

The predictive score ŷui gives the probability that user u will
purchase item i. Consequently, we utilize a probabilistic function
(e.g. the Logistic or Probit function) as the activation function
or the output layer φout to constrain the predictive score ŷui to
be in the range of [0, 1]. With the above setting, we define the
likelihood function as follow:

p(Y,Y−|P,Q) =
∏

(u,i)∈Y

ŷui
∏

(u,i)∈Y−

(1− ŷui), (4)

here Y denotes the set of observed entries in the adjacent ma-
rix Y , and Y− is the set of negative instances, which can be sam-
led from missing values since it is quite difficult to infer the neg-
tive preference from these miss values. It is worth mentioning
hat a missing value does not mean a negative feedback.

By taking the negative logarithm of the likelihood, we can
btain the object function of our method:

Φ = −
∑

(u,i)∈Y

log ŷui −
∑

(u,i)∈Y−

log(1− ŷui)

= −

∑
(u,i)∈Y

⋃
Y−

ŷui log ŷui + (1− ŷui) log(1− ŷui).
(5)

he optimization can be done by performing stochastic gradi-
nt descent (SGD). For the negative instances Y−, we uniformly
ample them from unobserved interactions in each iteration and
orrelate the sampling ratio w.r.t the number of observed inter-
ctions.

.2. Local neural block

The local neural block is inserted into two adjacent global
ayers. Two structures are picked to construct the local neural
lock: traditional MLP and deep residual neural network.

.2.1. MLP
This neural network has the same structure with the global

eural network, in which the number of nodes in the n-th neural
ayer is as twice as that of the (n − 1)-th layer. The architec-
ure contained such structure is illustrated in Fig. 3 and the
ormulation is defined as:

zG1 = φG
1 (pu, qi) =

[
pu
qi

]
,

zL1,1 = φL
1,1(z

G
1 ) = aL1,1(W

′T
1,1z

G
1 + b′1,1),

zL1,2 = φL
1,2(z

L
1,1) = aL1,2(W

′T
1,2z

L
1,1 + b′1,2),

......,

zL1,Z = φL
1,Z (z

L
1,Z−1) = aL1,Z (W

′T
1,Zz

L
1,Z−1 + b′1,Z ),

zG2 = φG
2 (z

G
1,Z ) = aL2(W

T
2z

L
1,Z + b2),

zL2,1 = φL
2,1(z

G
2 ) = aL2,1(W

′T
2,1z

G
2 + b′2,1),

......,

zLX,Z = φL
X,Z (z

L
X,Z−1) = aLX,Z (W

′T
X,Zz

L
X,Z−1 + b′X,Z ),

ŷui = φout (zLX,Z ) = aout (hT zLX,Z + b),

(6)

where pu and qi are the embedding vector for user u and item
i. Wx, bx and aGx denote the weight matrix, the bias vector and
the activation function for the x-th global layer, respectively. W′x,z ,
b′x,z and aLx,z denote the weight matrix, the bias vector and the
activation function for the z-th layer in the x-th local neural block.
The size of Wx changes with the layer’s position in the global
neural network shifting. The row number of Wx is D · 2X−x+1 and
the column number of W is D ·2X−x, where D is the length of the
x
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l

Fig. 3. The architecture of the local neural block built by the traditional MLP. Numbers in the rectangles denote the size of the layer.
ast global layer X . The length of the first layer in the x-th local
neural block is determined by both the length of the x-th global
layer and the depth of the local neural block, so the row number
and column number of W′x,1 are D · 2(X−x) and D · 2(X−x)+(Z−1),
respectively. The length of the z-th (z ̸= 1) layer is determined by
the length of the (z − 1)-th layer. Thus the row number and the
column number of W′x,z are D · 2(X−x)+(Z−z+1) and D · 2(X−x)+(Z−z),
respectively. In Fig. 3, the global network is a MLP with the
architecture of 256 → 128 → 64. There are accordingly three
local blocks: 512 → 256, 256 → 128 and 128 → 64. By
combining the global network and local blocks, there are nine
layers in the network.

4.2.2. Deep residual neural network
This structure is proposed by He et al. [16] in 2016 to handle

the degradation problem in the field of the computer vision.
The residual neural network adds shortcut connections among
disconnected layers, and outputs of those shortcut connections
are combined with outputs of a few stacked layers. Suppose H(x)
is an underlying mapping to be fit by a few stacked layers, where
x denotes the inputs to the first of these layers. These stacked
layers approximate another residual function F(x) := H(x) − x.
With the residual neural network, our model is defined as:

zG1 = φG
1 (pu, qi) =

[
pu
qi

]
,

zL1,1 = φL
1,1(z

G
1 ) = aL1,1(W

′T
1,1z

G
1 + b′1,1),

zL1,2 = φL
1,2(z

L
1,1) = aL1,2(W

′T
1,2z

L
1,1 + b′1,2),

......,

zL1,Z = φL
1,Z (z

L
1,Z ) = aL1,Z (W

′T
1,Zz

L
1,Z−1 + b′1,Z ),

z1 = zG1 + F(zG1 ,W1) = zG1 + zL1,Z
zG2 = φG

2 (z1) = aG2 (W
T
2z1 + b2),

zL2,1 = φL
2,1(z

G
2 ) = aL2,1(W

′T
2,1z

G
2 + b′2,1),

......,

zLX,Z = φL
L,Z (z

L
X,Z−1) = aLX,Z (W

′T
X,Zz

L
X,Z−1 + b′X,Z ),

zX = zGX + F(zGX ,WX ) = zGX + zLX,Z

ŷui = φout (zX ) = aout (hT zX + b).

(7)

We choose the tower pattern structure for the residual neural
network. The combination of the residual neural network and the
global neural network is presented in Fig. 4.

For the activation function of each neural layer, we choose
ReLU which yields a better performance than tanh and sig-
moid [6]. The sigmoid function may suffer from saturation where
neurons stop learning when their output is near either 0 or 1.
Tanh only alleviates the issues of sigmoid to a certain extent since
it can be considered as a rescaled version of sigmoid [30]. ReLU
is proven to be non-saturated and more suitable for sparse data,
5

making the model less likely to be overfitting [31]. The sigmoid
function σ (x) = 1/(1+ e−x) is selected as the activation function
for the output layer φout whose range is in [0, 1]. The pseudo code
of our method is presented in Algorithm 1.

4.3. Fusion of MF and our method

The previous work indicated that the traditional MF model
can be easily extended to the neural collaborative filtering frame-
work, called Generalized Matrix Factorization (GMF for short) [6].
The fusion of GMF and MLP can further improve the accuracy
of the algorithm. In a similar manner, we combine GMF and our
method by concatenating their last hidden layer. Fig. 5 illustrates
this proposal and the formulation is given as follows:

φGMF
= pGMF

u ⊙ qGMF
i

zG1 =
[
pHybrid
u

qHybrid
i

]
,

zL1,1 = aL1,1(W
′T
1,1z

G
1 + b1,1),

zL1,2 = aL1,2(W
′T
1,2z

L
1,1 + b1,2),

......,

zL1,Z = aL1,Z (W
′T
1,Zz

L
1,Z−1 + b1,Z ),

z1 = zG1 + zL1,Z
zG2 = aG2 (W

T
2z1 + b2),

zL2,1 = aL2,1(W
′T
2,1z

G
2 + b2,1),

......,

zLX,Z = aLX,Z (W
′T
X,Zz

L
X,Z−1 + bX,Z ),

φHybrid
= zGX + zLX,Z

ŷui = σ (hT
[

φGMF

φHybrid

]
)

(8)

Eq. (8) gives the formulation when the residual network is used to
build the local neural network (e.g. z1 = zG1+zL1,Z ). If the shortcut
connections are taken away, the output of the xth local block is
directly fed into the next global layer, which means zx = zLx,Z .

Likewise, we pre-train GMF and hybrid neural network with
random initializations until convergence and then use their pa-
rameters as the initialization for the hybrid model’s parameters.
We concatenate these two models on the output layer as follow:

h←
[

αhGMF

(1− α)hHybrid

]
, (9)

where hGMF and hHybrid denote the h vector of the pre-trained
GMF and the hybrid neural network, respectively. α is a hyper-
parameter which determines the trade-off between these two
pre-trained models.
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Fig. 4. The architecture of the local neural block built by the deep residual network. Numbers in the rectangles denote the size of the layer.
Fig. 5. The combination of the hybrid neural network and GMF.
The Adaptive Moment Estimation (Adam) is adopted to learn
arameters in models, computing adaptive learning rates for pa-
ameters by estimating the first and the second moments of the
radients [32]. After pre-training parameters of GMF and the
ybrid neural network, we change the approximation approach
rom Adam to vanilla SGD for it is unsuitable to optimize the
ombined model with momentum-based methods [6].

.4. Summary of our methods

To model interactions between users and items, we propose
hybrid neural network consisting of the global neural network
nd the local neural block. Two architectures are accordingly used
o build the local neural block and the hybrid neural network is
ombined with the GMF model. To give a clear explanation of
ur method, abbreviations and descriptions of our methods are
resented in Table 1.

. Experiments

.1. Experimental setup

.1.1. Datasets
In order to evaluate the accuracy of our method, five bench-

ark datasets are selected, namely MovieLens-100K, MovieLens-
M, Douban Book, Amazon Movies and Amazon Games.
ovieLens is a movie recommendation website, which employs
6

individual ratings to generate personalized recommendations.2
The MovieLens-100K dataset consists of 943 users and 1682
movies and the MovieLens-1M dataset has 6040 users and 3706
movies. Douban, launched on March 6, 2005, is a Chinese Web
2.0 website which provides user reviews and recommendation
services of movies, books, and music [33]. The raw data contains
user activities before Aug 2010 and we filter out those users
who have rated fewer than 20 movies because it is difficult to
accurately recommend items for inactive users. Amazon.com is
a multinational e-commerce company and the world’s largest
online retailer. The raw Amazon dataset contains product re-
views and product metadata spanning from May, 1996 to July,
2014 [34].3 We select individual ratings on movies and games to
evaluate our method and filter out those users who have rated
fewer than 20 products. For explicit ratings, we transform them
into binary forms. If the user has rated the item, the correspond-
ing entry is marked as 1. If the explicit rating is unobserved, the
entry is marked as 0. The statistics of datasets is presented in
Table 2.

5.1.2. Evaluation and metrics
In order to measure the performance of recommendation

methods, the leave-one-out evaluation is taken into consideration.
For each user, her/his latest interaction is held-out as the test
set and the remaining interactions are used as the training set.

2 https://grouplens.org/datasets/movielens/
3 https://jmcauley.ucsd.edu/data/amazon/

https://grouplens.org/datasets/movielens/
https://jmcauley.ucsd.edu/data/amazon/


W. Zeng, G. Fan, S. Sun et al. Applied Soft Computing 109 (2021) 107516
Table 1
A summary of our methods.
Abbreviation Description

HybridNNMLP The local neural block is built by MLP.
HybridNNres The local neural block is built by the residual neural network.
HybridNNMFMLP The hybrid neural network is combined with GMF and the local neural block

is built by MLP.
HybridNNMFres The hybrid neural network is combined with GMF and the local neural block

is built by the residual neural network.
W
T
l

ALGORITHM 1: Heterogeneous neural collaborative filtering.
Input:
Iter: training iterations.
neg: the number of negative samples.
γ : learning rate.
Y: the adjacent matrix.
Output:
P: latent matrix for user;
Q: latent matrix for item;
ΘG

f : parameters of the global neural network;
ΘL

f : parameters of the local neural block;
// Initialisation
randomly initialize P, Q, ΘG

f and ΘL
f ;

Y ← observed interaction set;
Y− ← unobserved interaction set;
for it from 1 to Iter do

set Y−sampled ← sampling neg* | Y | unobserved interactions from
Y−;
set T ← from Y ∪ Y−sampled ;
for each interaction of user u and item i in T do

// Global neural network
pu ← PTvu;
qi ← QToi;
for global layer x from 1 to X do

if x==1 then
set zG1 ← with the input of vu, oi;

else
set zGx ← with the input of zLx−1,Z , z

G
x−1;

end
// Local neural block
for local layer z from 1 to Z do

if z==1 then
set zLx,1 ← with the input of zGx ;

else
set zLx,z ← with the input of zLx,z−1;

end
end

end
set ŷui ← use the input zLX,Z ;
set L← use Eq. (5) with input of ŷui, yui;
updating model parameters with back propagation:
set ΘG

f ← ΘG
f − γ ∂Φ

∂ΘG
f

;

set ΘL
f ← ΘL

f − γ ∂Φ

∂ΘL
f
.

set pu ← pu − γ ∂Φ
∂pu

;
set qi ← qi − γ ∂Φ

∂qi
;

end
end

The leave-one-out evaluation method is adopted mainly based on
two considerations. Firstly, for the benchmark methods, authors
also utilize leave-one-out method to measure the performance of
recommendation algorithms [6,9]. To be fair, we use the same
evaluation method and process. The leave-out-out method is
widely used to evaluate the performance of methods by previous
7

Table 2
The statistics of benchmark datasets.
Dataset Interaction# Item# User# Sparsity

MoiveLens-100K 100000 1682 943 93.70%
MoiveLens-1M 1000209 3706 6040 95.53%
Douban Book 696669 30687 8144 99.72%
Amazon Movies 887233 67975 15063 99.91%
Amazon Games 62203 9364 1637 99.94%

literature [35,36]. Secondly, the latest item of a user is selected
as the test set. The main purpose of designing this evaluation
process lies in simulating a user’s selection on items in the
recommender system, namely using a user’s historical data to
predict the user’s future preferences or choices.

Since it is quite time-consuming to rank all items for every
user during evaluation, we randomly sample 100 items which
are not interacted by the target user and rank the test item
among these 100 items [6]. Hit Ratio (HR) as well as Normalized
Discounted Cumulative Gain (NDCG) are accordingly selected to
measure the ranked list of recommendation approaches. We trun-
cate the ranked list at 10 for both metrics. Since there is only one
test item in each user’s test set, HRu = 1 indicates that the test
item is presented on the top-10 list for user u, and 0 otherwise.

e average all user’s HRu as the final metric: HR = 1
M

∑M
u=1 HRu.

he NDCG measures the position of the test item in the ranked
ist, which is defined as: NDCGu = Z

∑10
j=1

2rj−1
log(j+1) , where Z is the

normalizer to ensure the perfect ranking has a value of 1; rj is the
graded relevance of item at position j. We use the simple binary
relevance for our work: rj = 1 if the item is in the test set, and
0 otherwise. In a similar way, we average NDCGu over all users:
NDCG = 1

M

∑M
u=1 NDCGu.

5.1.3. Baseline methods
We compare our method with the following approaches:

1. ItemPop [1]. Items are ranked according to their popular-
ity which is reflected by the number of interactions. This
is a non-personalized method selected as the benchmark
approach.

2. ItemKNN [37]. This is the standard item-based collabora-
tive filtering method with the assumption that a user tends
to collect similar items. We make use of implicit feedbacks
to calculate the item similarity.

3. BPR [38]. The bayesian personalized ranking (BPR) is a
generic optimization method for personalized ranking. We
apply this method to matrix factorization model by utiliz-
ing implicit feedbacks of users.

4. SoloMLP [6]. This method exploited the traditional MLP
to model the nonlinear relationships between users and
items. Furthermore, this method is combined with the
matrix factorization. The combined method is termed as
NeuMF. Both SoloMLP and NeuMF are compared with out
method.

5. DeepICF [9]. Such method captures both second-order and
higher order interactions among items. In the method,
the attention network is used for adaptively learning the
relative importance of these interactions.
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.1.4. Parameter settings
All parameters are randomly initialized (including baseline

ethods) with a Gaussian distribution (with a mean of 0 and a
tandard deviation of 0.01) [39]. We follow the evaluation process
nd parameter setting of [6]. For our method, the depth of the
ocal neural block is set to 2 and the pre-training parameter α

is set to 0.5. For ItemKNN, we test the number of neighbors of
[20,50,100]. SoloMLP, NCF and our proposed methods contain
some hyperparameters, including learning rate, negative sam-
pling ratio and the number of global layers. We test learning rate
of [0.001,0.05,0.01,0.05,0.1] and the number of global layers in
[1,3,6]. The negative sampling ratio is from 1 to 10. The architec-
ture of global network and local blocks is shown in Table 3 and
their combinations are illustrated in Figs. 3 and 4.

5.2. Results and analysis

5.2.1. The weight of the last layer
The final predictive scores are obtained via the layer weight

h and the output vector z: ŷ = aout (hT z + b). The layer weight
refers to the weights of neurons in the last layer. For the sake
of better demonstration, we directly plot the layer weights with
their absolute values (not the probability distribution) and the
result is given in Fig. 6, wherein the blue histogram repre-
sents the layer weight distribution of MLP and the orange his-
togram gives the layer weight distribution of HybridNNres net-
work. All the weights are obtained when the network achieves
the best predictive accuracy. From the figure, it can be seen that
layer weights of HybridNNres distribute more diversely than layer
weights of MLP. Taking MovieLens-100K dataset for instance, the
layer weights of MLP are mainly concentrated in the interval of 0
to 0.1 while the range of the weight is enlarged nearly three times
by HybridNNres network. However, for MovieLens-1M and Amazon
Movies datasets, the weight distribution of HybridNNres is not
significantly different from the distribution of SoloMLP. On the
Amazon Movies dataset, the layer weights of SoloMLP distribute
more diversely than HybridNNres. For most recommender systems,
individual preferences are quite complex and the deep network
may be better than the shallow network to learn features of users.
However, for certain recommender systems (e.g. Amazon Movies),
their users may have relatively simple preferences. As a result, the
shallow network may have a better feature learning capability
than the deep network in these systems.

In order to quantify the results of Fig. 6, we compute the
information entropy of the probability distribution of the layer
weights. We unify the range in [-0.5,0.5] for all datasets, dividing
a total of 20 intervals, and then count the probability of the
weight value in each interval. The information entropy is com-
puted by H =

∑20
i=1(pilog(pi)), where pi is the probability of the

weight value in the ith interval. The higher the entropy is, the
more uncertain the variable is. The entropy results are presented
in Table 4 where one can see that entropy of HybridNNres network
is higher than the entropy of SoloMLP network except on the
Amazon Movies dataset. As mentioned before, the shallow net-
work may be more suitable for this dataset. These results provide
a potential way to choose the proper network. In other words, one
can choose the shallow network or deep network by analyzing
the weight distribution of the last layer.

5.2.2. The visualization of output vector
In addition, we visualize the output vector. Firstly, we ran-

domly sample 1000 positive instances (positive user–item pairs)
and 1000 negative instances. Their embedding vectors are fed
into the SoloMLP and HybridNNres network. Secondly, we compute
he output vector zMLP and zhybrid whose dimensions are both 64.
Finally, the T-SNE method is applied to map the output vectors
8

into two dimensions [40], and the Fig. 7 gives the visualiza-
tion results. It can be seen that most of those instances can be
classified by SoloMLP and HybridNNres network and HybridNNres’s
lassification result seems better than the result of SoloMLP . In
rder to quantify the results, we make use of the method in
ef. [41] to compute the Kullback–Leibler (KL) divergence and
he results are shown in Table 5. The smaller the KL divergence
s, the better the classification represents. From these results,
ybridNNres’s KL divergence is smaller than the KL divergence of
oloMLP for all datasets. These results imply that HybridNNres has
a better feature learning ability than the SoloMLP .

5.2.3. The performance of our method
We compare our proposed methods with baseline approaches

on several datasets and results are presented in Table 6. From the
table, four conclusions can be obtained:

1. Without considering the combination with the GMF, the
hybrid neural network HybridNNres is superior to SoloMLP,
indicated by the results that the HybridNNres has the higher
HR@10 and NDCG@10 than the soloMLP. On certain datasets
such as Amazon Movies, the performance of HybridNNres is
even close to the performance of NeuMF which incorpo-
rates both linear and nonlinear model. Such result implies
our proposed mixed structures can learn better high-level
representations than SoloMLP. One possible reason may
be that the local neural block increases the nonlinearity
of the whole network [12] such that the recommendation
accuracy is augmented.

2. When the hybrid neural network is integrated with GMF
(HybridNNMFMLP and HybridNNMFres), the accuracy of algo-
rithm can be further improved. This result indicates that
both linear and nonlinear relationships may exist simul-
taneously between users and items. It is inadequate to
consider only the linear (or nonlinear) relationship to build
a predictive model.

3. From Table 6, it can be seen that HybridNNMFres enjoys
the best predictive accuracy on all datasets, the method
of which takes advantage of both MLP and residual neu-
ral network to construct the hybrid neural network. Al-
though HybridNNMFMLP builds the collaborative filtering
network with a ‘‘network-in-network" architecture, its ac-
curacy is worse than HybridNNMFres. One possible reason
may be that the learning ability of the residual network
is superior to the traditional MLP. The residual network
is proved to have excellent generalization performance on
recognition tasks and previous works also reveal that both
the accuracy and efficiency of traditional networks can
be greatly enhanced by residual connections [22]. Another
possible reason is that HybridNNMFres employs heteroge-
neous networks to build the collaborative filtering network,
which makes the information acquired by the network
more diverse.

4. The DeepICF makes use of the attention network to cap-
ture the relative importance of higher order interactions
of items. Broadly speaking, this network can be regarded
as one kind of the network-in-network architecture. It can
be seen that HybridNNMFres outperforms DeepICF in terms
of top-n item recommendations. This result suggests that
our method is better than DeepICF in modeling user–item
interactions.

Table 6 only shows the comparative results when the length
f the recommendation list is 10. We give the performance of
lgorithms in Table 7 when the length of the recommendation
ist ranges from 2 to 10. From the table, it can be seen that the
ccuracy (HR and NDCG) of HybridNNMF and NeuMF is better
res
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Table 3
The architecture of global network and local blocks.
Global network local blocks

→ 32→ 64→ 32
128→ 64→ 32 256→ 128, 128→ 64, 64→ 32

1024→ 512→ 256→ 128→ 64→ 32 2048→ 1024, 1024→ 512, 512→ 256,
256→ 128, 128→ 64, 64→ 32
Table 4
The information entropy of the probability distribution of the layer weights.

MovieLens-100K MovieLens-1M Douban Book Amazon Movies Amazon Games

SoloMLP 1.73 2.09 1.96 2.25 1.63
HybridNNres 3.53 2.11 3.11 1.95 3.32
Table 5
The Kullback–Leibler divergence.

MovieLens-100K MovieLens-1M Douban Book Amazon Movies Amazon Games

SoloMLP 0.242 0.216 0.220 0.206 0.333
HybridNNres 0.228 0.200 0.208 0.194 0.198
Table 6
The performance of different models in five datasets. Five independent experiments are executed and different initial parameters are used in each experiment. The
standard error is shown in the brackets and bold values indicate the best results.

MovieLens-100K MovieLens-1M Douban Book Amazon Movies Amazon Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

ItemPOP 0.426 (0) 0.240 (0) 0.453 (0) 0.254 (0) 0.524 (0) 0.326 (0) 0.244 (0) 0.130 (0) 0.353 (0) 0.196 (0)
ItemKNN 0.643 (0) 0.364 (0) 0.668 (0) 0.398 (0) 0.617 (0) 0.454 (0) 0.433 (0) 0.339 (0) 0.502 (0) 0.304 (0)
BPR 0.679 (.0016) 0.382 (.0008) 0.674 (.0002) 0.399 (.0010) 0.664 (.0010) 0.445 (.0020) 0.695 (.0024) 0.457 (.0027) 0.511 (.0040) 0.302 (.0028)
SoloMLP 0.681 (.0020) 0.396 (.0040) 0.704 (.0010) 0.422 (.0010) 0.678 (.0030) 0.458 (.0040) 0.674 (.0010) 0.441 (.0030) 0.504 (.0030) 0.288 (.0030)
NeuMF 0.705 (.0010) 0.410 (.0030) 0.729 (.0010) 0.449 (.0020) 0.702 (.0010) 0.475 (.0020) 0.703 (.0020) 0.471 (.0020) 0.530 (.0020) 0.327 (.0030)
DeepICF 0.691 (.0013) 0.400 (.0070) 0.695 (.0009) 0.423 (.0015) 0.669 (.0015) 0.463 (.0005) 0.525 (.0034) 0.316 (.0025) 0.516 (.0045) 0.312 (.0039)

HybridNNMLP 0.684 (.0017) 0.397 (.0022) 0.721 (.0011) 0.435 (.0028) 0.704 (.0013) 0.471 (.0016) 0.701 (.0006) 0.469 (.0009) 0.503 (.0019) 0.290 (.0030)
HybridNNres 0.698 (.0006) 0.401 (.0042) 0.719 (.0002) 0.437 (.0027) 0.694 (.0002) 0.465 (.0029) 0.700 (.0023) 0.466 (.0016) 0.515 (.0001) 0.310 (.0029)
HybridNNMFMLP 0.707 (.0007) 0.411 (.0292) 0.737 (.0002) 0.453 (.0013) 0.712 (.0019) 0.487 (.0013) 0.713 (.0001) 0.478 (.0021) 0.547 (.0009) 0.334 (.0006)
HybridNNMFres 0.726 (.0006) 0.420 (.0018) 0.738 (.0008) 0.456 (.0013) 0.713 (.0006) 0.487 (.0029) 0.719 (.0002) 0.483 (.0032) 0.562 (.0007) 0.343 (.0017)
Fig. 6. The layer weights (absolute value) of the last layer. The blue histogram represents the layer weight distribution of MLP and the orange histogram gives the
layer weight distribution of our hybrid network.
Fig. 7. The visualization of output vectors. The red dots denotes the mapped output vectors w.r.t positive instances and the blue dots indicate the mapped output
vectors of negative instances.
than the accuracy of ItemKNN and BPR since the two former
methods take both linear and nonlinear models into account. It
9

is worth mentioning that the simple algorithm ItemKNN achieves
competitive performance to certain complex methods such as
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Table 7
Evaluation of Top-K item recommendation where K ranges from 2 to 10.

HR@10 NDCG@10

MovieLens-100K

K itemKNN BPR NeuMF HybridNNMFres itemKNN BPR NeuMF HybridNNMFres
2 0.243 0.261 0.291 0.287 0.211 0.223 0.249 0.252
4 0.393 0.404 0.445 0.455 0.282 0.290 0.322 0.327
6 0.479 0.513 0.559 0.557 0.298 0.314 0.346 0.350
8 0.567 0.606 0.639 0.660 0.342 0.361 0.390 0.396
10 0.643 0.679 0.705 0.726 0.364 0.382 0.410 0.420
MovieLens-1M

K itemKNN BPR NeuMF HybridNNMFres itemKNN BPR NeuMF HybridNNMFres
2 0.284 0.293 0.343 0.351 0.243 0.251 0.297 0.303
4 0.432 0.442 0.502 0.513 0.313 0.321 0.372 0.379
6 0.531 0.543 0.604 0.612 0.334 0.343 0.393 0.401
8 0.605 0.617 0.675 0.687 0.374 0.382 0.433 0.441
10 0.662 0.674 0.729 0.738 0.390 0.399 0.449 0.456
Douban Book

2 0.415 0.369 0.402 0.417 0.371 0.328 0.355 0.369
4 0.524 0.500 0.539 0.554 0.423 0.389 0.419 0.433
6 0.570 0.579 0.616 0.629 0.432 0.406 0.437 0.449
8 0.597 0.629 0.664 0.677 0.449 0.435 0.464 0.476
10 0.617 0.664 0.701 0.713 0.454 0.445 0.475 0.487
Amazon Movies

2 0.322 0.374 0.394 0.402 0.293 0.330 0.347 0.357
4 0.383 0.511 0.528 0.543 0.322 0.394 0.411 0.423
6 0.406 0.594 0.612 0.622 0.327 0.412 0.429 0.441
8 0.421 0.653 0.666 0.679 0.335 0.444 0.459 0.471
10 0.433 0.695 0.703 0.719 0.339 0.457 0.471 0.483
Amazon Games

2 0.229 0.220 0.246 0.257 0.199 0.188 0.217 0.223
4 0.330 0.336 0.360 0.389 0.247 0.243 0.271 0.285
6 0.403 0.407 0.434 0.460 0.264 0.259 0.286 0.300
8 0.455 0.461 0.488 0.520 0.290 0.287 0.316 0.331
10 0.502 0.511 0.530 0.562 0.304 0.302 0.328 0.343
Table 8
The result of the significance analysis.

HR@10 NDCG@10

ItemKNN BPR NeuMF ItemKNN BPR NeuMF

nA/(nA + nB) ∗ 100%

MovieLens-100K 74.53% 67.44% 61.36% 64.32% 62.24% 52.35%
MovieLens-1M 71.56% 70.76% 54.72% 63.07% 63.84% 52.54%
Douban Book 70.37% 66.25% 55.11% 55.55% 60.74% 53.55%
Amazon Movies 86.31% 59.29% 56.39% 71.03% 56.81% 53.44%
Amazon Games 60.12% 62.24% 60.00% 57.14% 59.53% 53.95%

z∗score

MovieLens-100K 6.23 3.96 2.13 6.75 5.66 0.97
MovieLens-1M 13.51 12.59 2.24 15.54 16.42 2.75
Douban Book 17.84 11.32 3.05 7.29 13.75 4.36
Amazon Movies 55.87 8.06 5.46 40.05 11.86 5.94
Amazon Games 4.48 4.51 3.22 4.39 5.44 2.12
o
r
a
s

NeuMF . Taking the Douban Book dataset for example, ItemKNN
as a higher NDCG than NeuMF when the recommendation list
s below 4. The assumption behind ItemKNN is that users tend to
ollect similar items. For items like books, users are more inclined
o read similar books. After reading an author’s book, the user is
ikely to read another book written by the same author. This may
e the potential reason that ItemKNN ’s NDCG@K (K < 4) is higher
han NeuMF ’s NDCG. However, the limitations of ItemKNN are also
pparent. Firstly, the traditional ItemKNN takes the user list who
ave purchased the book to compute similarities among items,
gnoring the textual information of books. As a result, the sim-
larities obtained by ItemKNN may be inaccurate. Secondly, the
reference pattern of users is diverse, not just choosing similar
tems, and ItemKNN method fails to capture the complexity of
he preference pattern. The performance of ItemKNN is therefore
10
worse than that of NeuMF when the recommendation list is
increased.

In general, HybridNNMFres outperforms NeuMF while the gap
between these two methods is not significant on some datasets
(e.g. MovieLens-100K ). In order to perform the significance analy-
sis, we apply the sign test which requires few assumptions about
the distributional form of the data [42]. Suppose nA is the number
f users for whom our method is superior to the baseline algo-
ithm and nB denotes the number of users for whom the baseline
lgorithm is better than our method. We then calculate the z∗
core by z∗ = nA−0.5n√

n/4 , where n = nA + nB. |z∗| < 1.96 indicates
that our method and the baseline method are not significantly
different with at least 95% confidence. If z∗ > 0, there are at
least half users for whom our method is superior to the baseline
method.
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able 9
erformance of our model with different number of layers.

HR@10 NDCG@10

Number of layers 3 9 18 3 9 18

MovieLens-100K

HybridNNMLP 0.680 0.672 0.673 0.383 0.394 0.400
HybridNNres 0.670 0.685 0.698 0.396 0.399 0.401

MovieLens-1M

HybridNNMLP 0.691 0.700 0.721 0.412 0.426 0.435
HybridNNres 0.692 0.707 0.719 0.418 0.422 0.437

Douban Book

HybridNNMLP 0.660 0.672 0.704 0.432 0.445 0.471
HybridNNres 0.676 0.690 0.693 0.442 0.459 0.465

Amazon Movies

HybridNNMLP 0.663 0.677 0.701 0.425 0.447 0.469
HybridNNres 0.680 0.694 0.700 0.440 0.464 0.466

Amazon Games

HybridNNMLP 0.460 0.491 0.503 0.267 0.284 0.290
HybridNNres 0.487 0.509 0.515 0.287 0.299 0.310

We present the result of nA/(nA + nB) ∗ 100% and z∗ scores
n Table 8. Firstly, the improvement of our method is significant
omparing to the traditional method such as ItemKNN . On the
mazon Movies dataset, nearly 86.31 percent of users’ recom-
endation accuracy is enhanced by our method. In other words,

he improvement of our method is not just for a small group of
sers. Some users may be only fond of similar items, but most
f them have diverse and complicated preferences. Therefore, it
eeds complex model to learn their preferences. Secondly, the
aps between HybridNNMFres and baseline methods (ItemKNN ,
PR and NeuMF ) are significant (|z∗| > 1.96) for all datasets when

HR@10 is chosen as the metric. For NDCG@10, the difference be-
tween HybridNNMFres and NeuMF is not significant (|z∗| < 1.96)
on MovieLens-100K dataset. The results imply that the feature
learning ability may be not improved by our method on the
dataset, which reflects the limitation of our method.

5.2.4. The depth of the hybrid neural network
Prior works reveal that the algorithm’s accuracy is beneficial

from the growth of the number of neural layers [6]. From a
theoretical point of view, the result provides a potential way to
improve the accuracy of the algorithm. Likewise, we also study
the influence of the depth of the hybrid neural network on the
algorithm’s accuracy and the result is presented in Table 9.

In general, the accuracy of the hybrid network is beneficial
from the augmentation of the network’s depth. However, the
increasing trend of the accuracy slows down as the growth of
the network. For HybridNNMLP , the accuracy of 3-layer network
is better than the accuracy of 18-layer network. We devise a
mixed structure to enhance the feature learning ability of the
neural network, but in the real recommender system, individual
preferences are extremely complicated and change over time.
It is quite difficult and impractical to learn all their preference
patterns by a single network. As mentioned before, some users
may have relatively simple preferences and the shallow network
may be more suitable to recommend items for them than the
deep network.

5.2.5. The number of negative samples
When the pairwise object function in Eq. (5) is optimized, a

common way is to randomly sample a certain number of negative
instances for each positive instance. Table 10 shows the perfor-
mance of HybridNNMFres when each positive instance is related to
a portion of negative samples. When the ratio of negative samples
 c
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Table 10
The performance of HybridNNMFres w.r.t the number of negative samples per
positive instance. Bold values indicate the best results.
Negative ratio 1 4 5 6 10

HR@10

MovieLens-100K 0.701 0.722 0.711 0.706 0.704
MovieLens-1M 0.720 0.732 0.733 0.732 0.725
Douban Book 0.700 0.704 0.712 0.716 0.714
Amazon Movies 0.712 0.719 0.716 0.712 0.706
Amazon Games 0.543 0.552 0.563 0.561 0.552

NDCG@10

MovieLens-100K 0.397 0.419 0.404 0.411 0.409
MovieLens-1M 0.443 0.448 0.450 0.452 0.445
Douban Book 0.476 0.488 0.488 0.492 0.492
Amazon Movies 0.476 0.483 0.478 0.479 0.472
Amazon Games 0.333 0.342 0.347 0.348 0.340

ranges from 1 to 10, it is found that the optimal ratio is around 4
to 6. In consequence, we only present the result when the ratio
are 1, 4, 5, 6 and 10. As a matter of fact, the algorithm achieves
a competitive performance when the sample ratio equals to 1,
which demonstrates the advantages of pointwise log loss in terms
of the item ranking. In general, more negative samples are bene-
ficial to the accuracy of the algorithm. However, when the sample
ratio is greater than 6, the performance of HybridNNMFres starts
to drop. In addition, the performance of the algorithm stays
relatively stable when the sample ratio takes different values.

5.2.6. The dimension of latent factors
Table 6 gives the performance of algorithms when dimensions

of their embedding vectors are optimal. In Fig. 8, we present
the performance of algorithms with a variety of embedding vec-
tors’ dimensions. To make the figure clearer, we only present
HybridNNres and HybridNNMFres rather than all hybrid neural net-
ork methods. We only show the performance of NeuMF with

three layers and HybridNNres(HybridNNMFres) with nine layers. The
igure illustrates that HybridNNMFres outperforms the remaining
pproaches when the embedding vector’s dimension ranges from
6 to 128. One possible reason may be that HybridNNMFres adopts
ore neural layers and the information learnt by HybridNNMFres

s more accurate than the information uncovered by baseline
ethods. Another possible reason may be that HybridNNMFres
mploys heterogeneous neural networks with various structures
uch that the information obtained by our method is more diverse
han existing ones.

For HybridNNMFres, the optimal dimension of embedding vec-
or arranges from 32 to 64. If the dimension is too small, the
nformation expressed by the embedding vector may be insuf-
icient. Redundant information may appear in the embedding
ector on condition that the dimension is set too large, which
ay hurt the accuracy of the algorithm. Moreover, Fig. 8 shows

hat HybridNNres has unstable performance on different datasets.
or example, HybridNNres outperforms BPR on MovieLens-1M and
ouban Book datasets, while HybridNNres achieves the worse accu-
acy than BPR on Amazon Games dataset. This result indicates that
elationships between users and items are not all nonlinear. For
xample, some users may only be fond of comedy movies. Strong
inear correlations accordingly exist between these users and
omedy movies, which enables the linear model to be superior
o the nonlinear method. In general, HybridNNMFres holds the
est predictive accuracy because it integrates both linear and
onlinear models.

.2.7. The utility of pre-training
There are plenty of ways to initialize model parameters. A

ommonly used approach is random initialization and another
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Fig. 8. The performance of HR@10 and NDCG@10 w.r.t . the dimension of latent factors.
Fig. 9. The training time of methods.
able 11
he performance of the HybridNNMFres with and without pre-training. Bold

values indicate the best results.
With pre-training Without pre-training

datasets HR@10 NDCG@10 HR@10 NDCG@10

MovieLens-100K 0.722 0.419 0.699 0.400
MovieLens-1M 0.732 0.448 0.707 0.423
Douban Book 0.704 0.478 0.691 0.460
Amazon Movies 0.719 0.483 0.699 0.463
Amazon Games 0.552 0.342 0.564 0.339

one is to utilize parameters of a pre-trained model. We compare
these two initialization methods and the result is given in Ta-
ble 11. We make use of parameters which are pre-trained by GMF
and the hybrid neural network to initialize the embedding vector
(as shown in Fig. 5). This method is termed as ‘‘with pre-training".
The embedding vector can also be initialized randomly, which is
termed as ‘‘without pre-training". From the table, it can be seen
that the algorithm with pre-training normally enjoys a better per-
formance than the algorithm without pre-training. The possible
reason may be that the pre-training process preserves particular
information of the trained GMF and the hybrid neural network,
and such information is beneficial to the model’s accuracy.

5.2.8. The complexity analysis
Since our methods adopt more neural layers than baseline

lgorithms, it takes more time to train our models. We thus
ompare the training time of SoloMLP , NeuMF , HybridNN and
res
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HybridNNMFres. All these methods are implemented by Keras,4
which is a high-level neural network API, written in Python and
capable of running on top of Tensorflow. TensorFlow5 is a widely
used open-source machine learning framework [10]. All methods
run on the same machine (Intel I7 6800K CPU and Nvidia GTX
1080 Ti GPU). The result is demonstrated in Fig. 9 where the batch
size is set to 256 and the number of negative samples is 1. The
training time is measured by seconds. For SoloMLP and NeuMF ,
the depth of the neural layer are 1, 3 and 6. For HybridNNres and
HybridNNMFres, the corresponding depth of the neural network
are 3, 9 and 18, respectively. From the figure, it can be seen
that the algorithm combined with GMF has small difference of
training time with the algorithm uncombined with GMF (SoloMLP
vs. NeuMF , HybridNNres vs. HybridNNMFres). It is because GMF has
one neural layer and the training cost is mostly taken by MLP or
the hybrid neural network.

In addition, when the number of neural layers is relatively
small (e.g. 1 layer and 3 layers for SoloMLP), the difference of
training time between HybridNNres (HybridNNMFres) and SoloMLP
(HybridNNMFres) is inapparent. When the depth of the neural
network is augmented to 6, the total training time grows signif-
icantly on those relatively small datasets (e.g. MovieLens-100K ).
When the amount of the dataset is relatively small, the time
taken by non-computational processes (e.g. sampling process)
cannot be ignored when it is compared with the time taken
by the computational processes (e.g computation of the weight

4 https://keras.io/
5 https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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atrix W ). Consequently, when the depth of the neural network
grows, the non-computational time is enormously increased,
making the total training time increase rapidly. For those rel-
atively large datasets (e.g. Amazon Movies), the cost of those
non-computational processes can be ignored and the compu-
tational processes dominate the training time. As a result, the
running time of HybridNNres (HybridNNMFres) is not greatly raised
on those relatively large datasets when the depth of the neural
network is augmented. In the case of Amazon Movies dataset,
HybridNNres has 36.7% more training time than SoloMLP and
HybridNNMFres has 41.2% more training time than NeuMF . This
ratio is far smaller than the ratio of these two neural networks’
depth.

6. Conclusion and future work

In order to model user–item interactions, we design a hybrid
neural network where the MLP is used to build the global network
and the residual network is applied to form the local neural
blocks. Two top-n accuracy metrics are selected to measure the
performance of algorithms since the accuracy of top-n item rec-
ommendation are the main concern for users in the real world
applications.

On one hand, the hybrid network with residual connections
outperforms the network without them. Such result implies that
the residual network has excellent representation learning ability
on collaborative filtering tasks. The conclusion is also verified
on the recognition tasks by the previous research [22]. On the
other hand, the performance of the hybrid network can be fur-
ther improved by combining the generalized matrix factorization,
which means both the linear and nonlinear relationships are
important to build the model. Furthermore, we study the weight
distribution of the output layer and visualize the output vector.
It is revealed by the results that the weight vector obtained by
our method distributes more diversely comparing to the solo MLP
and our method also has a smaller Kullback–Leibler divergence
than the solo MLP when the output vector is visualized. However,
on certain datasets (e.g. Amazon Movies), the feature learning
ability of the network is indeed not improved by our method. On
these datasets, other networks such as memory networks can be
candidates to build the local block [24,43]. Thereby, there are still
many open issues.

The complexity is increased by our method since we uti-
lize a deeper network. However, the incremental ratio of the
training time is far smaller than the incremental ratio of the
network’s depth. The complexity problem can be alleviated by
certain network compression methods which are capable of re-
ducing parameters in the network [44,45]. We will try these
methods in the future work.
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