
Neurocomputing 472 (2022) 103–112
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
PPPNE: Personalized proximity preserved network embedding
https://doi.org/10.1016/j.neucom.2021.11.059
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: fange@std.uestc.edu.cn (G. Fan), bgeng@andrew.cmu.edu

(B. Geng), hztaojianrong@corp.netease.com (J. Tao), wangkai02@corp.netease.com
(K. Wang), fanchangjie@corp.netease.com (C. Fan), zwei504@uestc.edu.cn
(W. Zeng).

1 This work is done when Ge Fan and Biao Geng worked as intern at Fuxi AI Lab,
NetEase.
Ge Fan a,d,1, Biao Geng b,1, Jianrong Tao c, Kai Wang c, Changjie Fan c, Wei Zeng a,⇑
aCenter for Artificial Intelligence and Smart Health, University of Electronic Science and Technology of China, Chengdu, China
bCollege of Engineering, Carnegie Mellon University, Pittsburgh, USA
c Fuxi AI Lab, NetEase inc., Hangzhou, China
d Lgame, Tencent, Shengzhen, China

a r t i c l e i n f o
Article history:
Received 11 March 2020
Revised 28 January 2021
Accepted 21 November 2021
Available online 6 December 2021
Communicated by Zidong Wang

Keywords:
Network embedding
Learning to rank
Personalized proximity preserving
a b s t r a c t

After being proved extremely useful in many applications, the network embedding has played a critical
role in the network analysis. Most of recent works usually model the network by minimizing the joint
probability that the target node co-occurs with its neighboring nodes. These methods may fail to capture
the personalized informativeness of each vertex. In this work, we propose a method named Personalized
Proximity Preserved Network Embedding (PPPNE) to adaptively capture the personalization of vertices
based on the personalized ranking loss. Our theoretical analysis shows that PPPNE generalizes prior work
based on the matrix factorization or the neural network with a single layer, and we argue that preserving
personalized proximity is the key to learning more informative representations. Moreover, to better cap-
ture the network structure in multiple scales, we exploit the distance ordering of each vertex. Our
method can be efficiently optimized with a vertex-anchored sampling strategy. The results of extensive
experiments on five real-world networks demonstrate that our approach outperforms state-of-the-art
network embedding methods with a considerable improvement on several common tasks including link
prediction and vertex classification. Additionally, PPPNE is efficient and can be easily accelerated by par-
allel computing, which enables PPPNE to work on large-scale networks.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

During the development of mobile internet and the advance-
ment of decentralization technology, network information plays
an essential role in knowledge discovery in databases. However,
networks are unstructured and cannot be readily used as struc-
tured knowledge repositories which are indispensable in modern
machine learning. To address this problem, network embedding
approaches are proposed and widely adopted by many applica-
tions in internet systems, such as social recommendation and visu-
alization [1].

The key of network embedding lies in finding a low-
dimensional vector representation for each vertex to preserve the
local and global structure information in the learned vector space
[2]. Plenty of research efforts are devoted to preserving network
structure by maximizing the proximities between vertices and
their neighbors. The difference is that early works concentrate on
first-order proximity while the recent incline to preserve high-
order proximity or combine them. However, there are still two
major challenges:

The personalization of vertices. The concept of personalization
is initially introduced in the recommender system where individ-
ual preferences are diverse and items recommended for them
should be distinctive [3]. However, few research efforts concen-
trate on the personalization of vertices in the field of network
embedding. For example, a certain number of works minimize
the joint probability of all links co-occurring in the whole network
[4]. All vertices in the networks are treated equally by these meth-
ods. Nevertheless, properties of vertices are diversified in real net-
works. Some vertices have hundreds of neighbors while certain
vertices have only a few neighbors. As a consequence, each vertex
should be treated in a personalized way when the model is trained.

The natural ranking of vertices. Intuitively, the target vertex is
closer to its 1-hop neighbors than its 2-hop neighbors and certain
previous works consider the natural ranking of vertices. For
instance, Bojchevski et al. [5] proposed the Graph2Gauss method
which exploits the natural ranking of neighboring nodes to capture
the network structure. However, the number of higher-order

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.11.059&domain=pdf
https://doi.org/10.1016/j.neucom.2021.11.059
mailto:fange@std.uestc.edu.cn
mailto:bgeng@andrew.cmu.edu
mailto:hztaojianrong@corp.netease.com
mailto:wangkai02@corp.netease.com
mailto:fanchangjie@corp.netease.com
mailto:zwei504@uestc.edu.cn
https://doi.org/10.1016/j.neucom.2021.11.059
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
neighbors is normally much larger than the number of lower-order
neighbors. As a result, there exist biases in the procedure of
instance sampling, whereas existing methods fail to balance such
bias.

In order to address the above two challenges, we propose the
personalized proximity preserved network embedding approach
which borrows ideas from the Bayesian personalized ranking
method [6], as illustrated in Fig. 1.

[Personalization:] We exploit a personalized ranking loss to
capture the personalization of each vertex. More specifically,
we treat first-order and high-order neighbors as the specific
”context” for the target vertex and only the context nodes are
used to learn representations of the target vertex (as depicted
in the (c) stage in Fig. 1). It is similar to the scenarios in the rec-
ommender system where users’ collected/purchased items are
utilized to learn their features.
[Natural ranking:] In our method, the target vertex is closer to
its lower-order neighbors than its higher-order neighbors, e.g.
closer to its first-order neighbors than its second-order neigh-
bors. Since a vertex usually has many more second-order neigh-
bors than its first-order neighbors, we take advantage of the
regularization method to balance such bias.

To summarize, the contributions of this work are listed as
follows:

� We design an unsupervised personalized ranking formulation,
preserving first-order and second-order proximity jointly, to
capture the personalized informativeness of vertices.
� We propose a novel model (PPPNE) for network embedding,
leveraging the natural ranking of each vertex w:r:t. their neigh-
borhoods via the proposed ranking formulation, which extends
the capability of similarity measure in the complex networks.
� We perform experiments over five real-world networks and
three frequently used applications, including link prediction,
vertex classification and visualization. The results show that
our methods can outperform all state-of-art baselines and
achieve significant improvement (e.g., 11:57% relative improve-
ment in AUC on link prediction task).

2. Related Work

It is a common way to represent a network in a sparse matrix
form. However, as the amount of vertices of the network can be
tremendous, the dimension curse is unavoidable. To address this
problem, various network embedding methods have been devel-
oped. Among those methods, the earlier ones [7,8] usually acquire
Fig. 1. Framework of PPPNE. (a) An example network. (b) Searching q-hop neighbor
corresponding triplets. (d) Updating parameter for each sample. We make positive verte

104
a low dimension representation by decomposing the affinity
matrix extracted from the network input. Locally Linear Embed-
ding [7] aims to find embeddings which preserve distances within
local neighborhoods and Spectral Cluster [8] uses the smallest
eigenvectors of Laplacian matrix of the network as the representa-
tion, Graph Factorization (GF) [9] learns the representation by fac-
torizing the normalized adjacency matrix. However, these
conventional methods fail to take the high-order proximity into
account and usually suffer from computational complexity caused
by matrix decomposition.

Nowadays, new methods have been proposed for capturing the
high-order proximity. DeepWalk [2] introduces the Skip-Gram
model from word embedding by producing corpus with random
walk technique. LINE [10] defines first-order and second-order
proximity, taking a similar idea but refining the walk length as
one to preserve local and global structural information in the
large-scale network. Node2vec [11] extends the idea by adopting
the potentially biased random walk to keep homophily and struc-
tural similarity. Since those random walk based methods are
equivalent to factorizing high-order proximity matrices [4], there
are many network embedding methods trying to preserving
high-order proximity directly with matrix factorization technique
[12–15]. GraRep[12] considers different powers of the adjacency
matrix to depict higher-order proximities and [13] preserves com-
munity structure of the network by non-negative matrix factoriza-
tion. HOPE[14] algorithm incorporates high-order proximity
measurements (e.g. Katz Index) into its framework for directed
network. AROPE[15] extends it with a scalable eigen-
decomposition solution to derive the embedding vectors and shift
them between proximities of arbitrary order. Hierarchical Negative
Sampling (HNS) [16] is proposed to select more appropriate nega-
tive samples in network embedding methods by exploiting the
information from rank N neighbors of vertices. Locality-aware
meta-learning framework (meta-tail2vec)[17], a locality-aware
meta-learning framework, learns to simulate the regression model
for the low-degree vertices at different localities, which can be
combined with methods like DeepWalk and GraphSAGE to refine
embedding results. [18] adopts the idea of ensemble methods to
boost performance by training multiple individual models and
then aggregating their embeddings as the final representation.

Deep neural networks [19,20] are also used to capture the high-
order proximity by seeking an effective non-linear mapping from
original network to low-dimensional vector space. Auto-encoder
[21,19,22] is a widely used architectural paradigms for learning
latent representations. For instance, SDNE [21] uses auto-
encoders to reconstruct the vertex’s neighborhood, which is seen
as the second-order proximity, and jointly preserves first-order
proximity with Laplacian eigenmaps. DRNE [23] uses
hoods for each vertex. (c) For each hop, sampling one vertex and acquiring all
x (red) close to anchor vertex (yellow) and negative vertex (violet) away.

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
layer-normalized LSTM to aggregate representations of the vertex’s
neighborhood. Graph Diffusion Network (GDN) [24] replaces virgin
auto-encoder with Graph Diffusion Auto-encoder to maintain glo-
bal information, and can dynamically preserve local and global
consistency of graph. DONE [25] learns low-dimensional represen-
tation based on the semi-supervised stacked sparse auto-encoder.
ANE [26] acquires network representations by leveraging the prin-
ciple of adversarial learning. Adversarially Regularized Graph
Auto-encoder (ARGA) [27] obtains smoothly embeddings via
adversarially regularized auto-encoders. Directed Graph embed-
ding framework based on Generative Adversarial Network
(DGGAN) [28] jointly learns each vertex’s source and target vectors
by a discriminator with two generators.

More recently, Graph Convolutional Network (GCN) [29] have
achieved impressive performance for processing network data.
The fundamental idea of GCN is that iteratively modeling the attri-
butes from neighbor vertices to a target vertex by an aggregating
neural network. Simplified Graph Convolution (SGC) [30] acceler-
ates GCN through removing nonlinearities and collapsing weight
matrices between consecutive layers. Adaptive Multi-channel
Graph Convolutional Networks (AM-GCN) [31] extracts the specific
and common embeddings from multi-channel sources, including
the feature of vertices, topological structures, and their combina-
tions simultaneously, and learns adaptive importance weights of
the embeddings via a attention mechanism. Position-aware Graph
Neural Networks (P-GNNs) [32] is proposed for computing
position-aware vertex embeddings. Despite their success, most
GCN based methods ignore the personalization of vertices since
the aggregation function is defined as the summarization or aver-
age of neighboring feature.

Although personal ranking model [6] has been widely applied in
information retrieval such as recommender systems and search
engines [6,33], there is few works to exploit unsupervised person-
alized ranking in network embedding. To the best of our knowl-
edge, most of existing methods [34,5] are mainly designed for
attributed networks.

3. Problem Definition

We follow [10] to define the network as follow:

Definition 1 (Network). A Network is defined as G ¼ ðV ; EÞ, where
V ¼ fv1;v2; . . . ::;vng is the vertex set and E ¼ fei;jgni;j¼1 is the edge

set, each edge ei;j denotes the relationship between two vertices
and is associated with a weight si;j P 0 where si;j ¼ 0 denotes v i

and v j not linked by an edge. For other linked edges, if E is
unweighted, si;j ¼ 1, if E is weighted, si;j > 0. If G is undirected,
si;j � sj;i, if G is directed, si;j: � sj;i.

Note that while truly negative edge (e.g. review networks [35])
weights are possible, in this study, those unlinked edges, si;j ¼ 0,
are called negative edges. In a network, the neighbourhood of ver-
tex v i is the set of all vertices adjacent to v i, formulated as
Nðv iÞ :¼ fv j j v j 2 V ; si;j > 0g.

Preserving network structures is one of the most important
requirements for conducting the embedding. Network structures
are usually implied by proximities of vertices which are divided
as first-order proximity and second-order proximity defined in
[10]. Recently, preserving high-order proximity by higher-hop
neighbor relationship shows improved performance [14,15]. In
order to unify them, we define the generalized first-order proxim-
ity and generalized second-order proximity as below:

Definition 2 (Generalized First-order Proximity). The generalized
first-order proximity in a network describes the immediate
105
pairwise proximity between two vertices. For any vertices pair,
(v i;v j) is only measured by the similarity function f sim with the
embedding pair (zi; zj).
Definition 3 (Generalized Second-order Proximity). The generalized
second-order proximity between a pair of vertices ðv i;v jÞ in a net-
work describes the mediate proximity between two vertices.
Mathematically, let pv i = (wv i ;1,. .. , wv i ;jV j) denote the generalized
first-order proximity of v i with all the other vertices, then the gen-
eralized second-order proximity between v i and v j is determined
by the similarity between pv i

and pv j
.

Note that the first-order (second-order) proximity in prior
works [10,21] can be seen as a special case of our generalized
first-order (second-order) proximity by only considering 1-hop
neighborhoods. In this paper, with no special mention, we repre-
sent generalized first-order (second-order) proximity as first-
order (second-order) proximity for simplicity.
4. Proposed Methodology

4.1. Preserving Proximity by Personalized Ranking

For a vertex set fv i;v j;vkg, if v j is considered as closer to v i than
vk (i.e. v i;v j are linked but v i;vk aren’t), we mark the set containing
all satisfying triplets as Ds. Following [6], we can derive our person-
alized ranking loss as:

L ¼ �
X

ðv i ;v j ;vkÞ2Ds

logðrðzi;j;kðHÞÞÞ þ kHkHk2 ð1Þ

where zi;j;kðHÞ is an arbitrary function of the model parameter
Hwhich captures the ranking relationship between fv i;v j;vkg;ris
sigmoid function and kH is the hyper-parameter controlling the reg-
ularization term.

4.1.1. First-order Proximity Preserving
Inner product is a popular measurement to preserve first-order

proximity and has been probed extensively in literature. In order to
transform GF [9], the basic form for using inner product, we define
zi;j;kðHÞ ¼ zTi zj � zTi zk and write the first-order proximity preserved
loss as:

L1st ¼ �
X

ðv i ;v j ;vkÞ2Ds

logðrðzTi zj � zTi zkÞÞ þ kkzk2 ð2Þ

where zi; zj and zk denote the embedding vectors of v i;v j and
vk. k denotes the regularization for matrix z formed by zi.
Note that though our Eq. 2 adopts the simplest form to model
the first-order proximity, some recent works are easily proved
as the equivalence of Eq. 2 under our framework if model
function is monotonically increasing with the result of inner
product.

4.1.2. Second-order Proximity Preserving
The second-order proximity assumes that vertices sharing

many connections to other vertices are similar to each other. In
order to utilize this kind of proximity, a common way is to treat
each vertex as a specific ‘‘context” and vertices with similar distri-
butions over the ‘‘contexts” are assumed to be similar. We follow it
assuming each vertex plays two roles: embedding vector itself and
a specific ”context” for others. Replace zi;j;kðHÞwith zTi z

0
j � zTi z

0
k and

loss function is defined as follow:

L2nd ¼ �
X

ðv i ;v j ;vkÞ2Ds

logðrðzTi z0j � zTi z
0
kÞÞ þ kkzk2 þ k0kz0k2 ð3Þ

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
where z0j (z0k) denotes the representation of v j (vk) when it is trea-
ted as a specific ”context”, and k0 denotes the regularization for
”context” vectors.

Similarly, since prior works [36,10,4] show that some recent
methods (i.e. LINE2nd) can be unified as matrix factorization meth-
ods, Eq. 3 generalizes aforementioned models based on matrix fac-
torization or neural network with single layer.

4.1.3. Combined Preserving
So far we have developed two methods preserving the first and

second order proximity respectively. Then there are different ways
to combine two models under our framework. Concatenating the
embeddings trained by the two methods for each vertex is a simple
one but may re-weight difficultly in unsupervised tasks [10]. In this
paper, we jointly train the Eq. 2 and 3 as follow:

L ¼ �
X

ðv i ;v j ;vkÞ2Ds

logðrðzTi z0j � zTi z
0
kÞÞ þ akz� z0k2 þ kkzk2

þ k0kz0k2 ð4Þ
where a is the hyper-parameter controlling the effect of distance
between content vector z and context vector z0. The regularization

term kz� z0k2 can be considered as a balance between first-order
neighbors and second-order neighbors. It is obvious that formula
4 and 2 is equivalent when a ¼ 1, and formula 4 and 3 is equivalent
when a ¼ 0.

4.2. PPPNE Model

Firstly, we define the distance dsði; jÞ as the shortest length
between vertex v i and v j.

Intuitively, those pairs of vertices having shorter distance are
closer in the embedding space. Thus, the complete satisfying set
can be formulated as:

Ds ¼ fðv i;v j; vkÞ 2 V3 j dsðv i;v jÞ < dsðv i;vkÞg ð5Þ
We can optimize Eq. 4 with stochastic gradient descent (SGD).

But it is expensive to calculate all the combinations of all samples
especially when the network is large. To address the problem and
balance the updating between short-distance pairs and long-
distance pairs, we propose a vertex-anchored sampling strategy
presented in Algorithm 1 in each iteration.

Algorithm1: Vertex-anchored sampling strategy

Input:
Q: maximum distance;
Output:
D0s: sampling set of Ds;
1: set Vs ¼ f g ;
2: for v i 2 V do
3: for q from 1 to Q � 1 do
4: randomly select v j 2 V into Vs where dsði; jÞ ¼ q;
5: end for
6: end for

7: return D0s ¼ fðv i;v j;vkÞ 2 V3
s j dsðv i;v jÞ � dsðv i; vkÞ ¼ 1g;
2 http://socialcomputing.asu.edu/pages/datasets
3 https://n.163.com
4 https://linqs.soe.ucsc.edu/data
5 https://snap.stanford.edu/data/loc-gowalla.html
6 https://github.com/scikit-learn/scikit-learn
7 https://github.com/palash1992/GEM
The complexity of computing the original Eq. 4 is OðN3Þ, where
N is the number of vertices of a network. As shown in Fig. 1, q-hop
neighbors of all vertices are calculated and cached in the begin-
ning, when Algorithm 1 is adopted, the complexity is reduced to
OðQNÞ. Since Q � N and setting Q to a small value (i.e. 2) also
shows comparable performance [5], the complexity can be consid-
ered as OðNÞ. We describe the detailed training process in Algo-
rithm 2.
106
Algorithm2: Optimizing PPPNE

Input:
Iter: training iterations;
c: learning rate;
G ¼ ðE;VÞ: Network;

Output:
H: all model parameters;
1: randomly initialize all parameters;
2: forit from 1 to Iter do
3: Sampling D0s with Algorithm 1
4: foreach ðv i;v j;vkÞ in D0s do
5: set L use Eq. 4 with input ðv i;v j;vkÞ;
6: set zi zi � c @L

@zi
;

7: set zj zj � c @L
@zj

;

8: set zk zk � c @L
@zk

;

9: set z0i z0i � c @L
@z0i;

10: set z0j z0j � c @L
@z0j;

11: set z0k z0k � c @L
@z0k;

12: end for
13: end for
5. Experiments

5.1. Experiment Setting

5.1.1. Datasets
In order to comprehensively measure the performance of our

proposed method, we choose 5 different real-world datasets from
different domains. Protein–Protein Interactions (PPI) is a sub-
graph of biological network for Homo Sapiens, whose edges repre-
sent the pairwise interactions between proteins. We choose the
proteins as nodes which can be labelled by the hallmark gene sets
[37]. BlogCatalog 2 is a social network drawn from BlogCatalog,
whose edges denote the social relationship of the bloggers listed
on the website. Each user is labelled by at least one category.
MMORPG 3 is a social network on a Justice game. We use the friend-
ship data between players provided by a server. Cora 4 is a citation
network of research papers. Vertices represent the published papers
and edges represent that if the paper cites or is cited by other papers.
Each paper is associated with one categories. Gowalla 5 is a large
location-based social network. The statistics of all networks are
given in Table 1.

5.1.2. Baseline Methods
We compare our instances with several existing network

embedding methods as follows:

� Spectral Clustering (SC) [8] 6. It is a state-of-art variant of LE,
which computes the first d eigenvectors of normalized Laplacian
matrix. This method is used to benchmark the performance of NE
methods which only use first-order proximity.
� Graph Factorization (GF) [9] 7. It factorizes the normalized adja-
cency matrix. We follow [38] using SGD to minimize the objective
function.

Table 1
Statistics of the benchmark networks.

Dataset j V j j E j labels Avg. Degree

Cora 2,708 5,278 7 3.90
PPI 2,909 27,363 50 18.81

BlogCatalog 10,312 333,983 39 64.78
MMORPG 46,578 220,881 – 9.48
Gowalla 196,591 950,327 – 9.67

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
� LINE [10] 8. It learns two separate embeddings LINE1st and
LINE2st for preserving the first and second order proximity
respectively, then concatenates those two parts into a long vec-
tor. We report the best performance from those three models.
� Node2vec [11] 9. It generalizes DeepWalk by adopting poten-
tially biased random walks. These random walks follow the
breadth-first sample and depth-first sample strategies with the
flexible hyperparameters p and q.
� Graph2Gauss (G2G_oh)[5] 10. This model learns to embed each
node as a low-dimensional Gaussian distribution by ranking sim-
ilarity based on the shortest path between nodes. As all datasets
are plain network, we follow the author using one-hot encoding
of the nodes as attributes in the paper.
� AROPE [15] 11. This is a state-of-the-art method based on SVD,
which derives the embedding vectors and shifts them between
proximities of orders.
� VERSE [39] 12. This is a state-of-the-art embedding method.
VERSE reconstructs the distribution of chosen similarity measure
for each node.
� ACNE [40] 13. This is an adversarial learning method for network
embedding. ACNE jointly learns the vertex and community repre-
sentations in GANs framework.
� Meta-tail2vec [17] 14. This model refines the long tail vertex
embedding with a personalized regression model, and uses a
locality-aware meta-learning framework to alleviate overfitting
problem.

We exclude some other network embedding methods, such as
GraRep [12] and M-NMF [13], for their scalability issues. We also
exclude HOPE [14] since it can been seen as a special case of
AROPE. For our methods, we present two variations:

� PPPNE. We propose this method to preserve the personalized
proximity of network by optimizing Eq. 4. we adopt the mini-
batch RMSProp [41] with a fixed learning rate of 0:001.
� PPPNE1st. In order to study the effect of the ranking loss alone,
we mark the variation of PPPNE which optimizes Eq. 2 as
PPPNE1st.

5.1.3. Parameter Settings
We implement our proposed method based on Tensorflow and

randomly initialize model parameters with xavier initialization
[42]. The hyper-parameters of proposed model and baselines are
tuned by grid search on a small validation set, which we set as
10% in our experiments [15]. For Node2vec, we test both its in-
out and return hyper-parameters in f0:25;0:5;1g. For LINE, we
set the number of negative samples as 5. For AROPE, we test the
order in f1;2;3;4g. For VERSE, we set the a ¼ 0:85. For ACNE, we
8 https://github.com/carpedm20/LINE
9 https://github.com/aditya-grover/node2vec

10 https://github.com/abojchevski/graph2gauss
11 https://github.com/ZW-ZHANG/AROPE
12 https://github.com/xgfs/verse
13 https://github.com/junyachen/ACNE
14 https://github.com/smufang/meta-tail2vec

107
set the k ¼ 10�5 . For Meta-tail2vec, we choose DeepWalk as the
base embedding model. Specifically, we set the dimension
d ¼ 128 for all methods.

5.2. Link Prediction

Link prediction, whose goal is to predict missing edges, is one of
the most common applications in real world. In this section, we
first hide a portion of the existing edges and learn the embeddings
of vertices in the rest. We then predict the held-out edges by
applying the similarity function of pairs between two vertices with
the obtained embedding. With no special mention in this paper, we
hide about 20% edges of origin network, which are seen as positive
samples, and randomly select no-edge vertex pairs as negative
samples with equal number. The Area Under ROC Curve (AUC)
and Average Precision (AP) [5] are adopted as the evaluation met-
rics. Besides, we measure the relative improvement (RelaImpr) over
baseline models. Since the value of AUC from a random guesser is
0.5, we follow [43] define the RelaImpr of AUC. We report the main
results in Table 2, after analyzing the results, some observations
are listed as follows:

� Our two proposed methods significantly outperform all baseline
methods on five networks, especially for AP metric. In addition,
even the PPPNE1st which only preserves first order proximity
have better performance than baselines in all cases. It demon-
strates the strong ability of our proposed methods to tackle
the personalization of vertices and predict the unobserved
edges.
� G2G_oh is another model using ranking loss similar to our
model, but it achieves a poorer performance than both of our
methods. As depicted above, the target node normally has more
higher-order neighbors than lower-order neighbors and
G2G_oh doesn’t balance such bias in the process of instance
sampling. In addition, G2G_oh employs K-L divergence to eval-
uate the similarity between vertices but paper [23] verified the
K-L divergence may be not a proper similarity measure to cap-
ture the transitivity for the undirected networks.
� As a matter of fact, PPPNE1st has comparable results with the
PPPNE, the situation of which is similar with LINE1st vs. LINE2nd
in our experiments and prior works [44,45]. One possible expla-
nation is that PPPNE1st considers the first-order proximity,
which is capable of capturing the local structure of the network.
Both PPPNE1st and PPPNE are better than LINE since our meth-
ods preserve the personalization of vertices.

5.3. Vertex Classification

Vertex classification is another important task of network
embedding. In order to measure the performance of above meth-
ods in vertex classification, following [21,11], we first unsupervis-
edly embed each vertex as a low dimensional vector, which is
usually seen as features of the classification application. Then we
classify vertices with already existing labels. Specifically, we
choose the one-vs-rest logistic regression provided by LIBLINEAR
package [46] as our classifier. For all datasets, we randomly sample
10% to 90% of the vertices as the training samples and use the left
vertices to test the performance. We use averaged Micro-F1 and
Macro-F1 as metrics for evaluation [10]. We repeat this process
10 times and report the result in Table 3. From the result, we have
following observations:

� Similar to link prediction task, our proposed methods achieve
the best performance compared with other baseline methods
in both metrics on all datasets. Specifically, PPPNE obtains
3:48% � 13:67% (average 8:91%) relative improvement with

Table 2
The AUC and AP of link prediction. Bold values indicate the best results. Underlined values indicate the best results of all baseline Methods. RelaImpr shows the relative
improvement between PPPNE with underlined values. The result shows that PPPNE outperforms all baseline in both AUC and AP.

BlogCatalog PPI Cora MMORPG Gowalla

Model AUC AP AUC AP AUC AP AUC AP AUC AP

SC 0.501 0.335 0.502 0.336 0.497 0.340 0.502 0.335 0.499 0.332
GF 0.591 0.381 0.605 0.396 0.681 0.622 0.608 0.461 0.717 0.570

LINE1st 0.625 0.510 0.634 0.547 0.743 0.766 0.712 0.694 0.908 0.903
LINE2nd 0.612 0.484 0.632 0.515 0.792 0.763 0.801 0.728 0.853 0.816

Node2vec 0.629 0.471 0.635 0.496 0.865 0.807 0.631 0.560 0.817 0.760

G2G_oh 0.833 0.817 0.784 0.777 0.851 0.876 0.803 0.804 0.945 0.950
AROPE 0.842 0.729 0.767 0.643 0.764 0.731 0.767 0.665 0.855 0.800

VERSE 0.737 0.550 0.740 0.557 0.839 0.794 0.770 0.688 0.925 0.891
ACNE 0.745 0.679 0.768 0.573 0.841 0.811 0.739 0.838 0.905 0.894

Meta-tail2vec 0.634 0.447 0.635 0.479 0.862 0.822 0.651 0.557 0.843 0.770
PPPNE1st 0.880 0.874 0.822 0.834 0.913 0.929 0.818 0.839 0.959 0.969
PPPNE 0.886 0.876 0.827 0.841 0.925 0.939 0.825 0.852 0.963 0.970

RelaImpr 12.87% 7.22% 15.14% 8.24% 16.44% 7.19% 7.26% 5.97% 4.04% 2.11%

Table 3
Performance of vertex classification w:r:t percent of training size. All results are expressed in percentage terms.

Algorithm Macro F1 Micro F1

10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 70% 80% 90%

PPI
SC 8.42 10.88 12.42 13.59 14.35 14.77 15.46 15.43 15.66 13.73 16.50 18.21 19.28 19.91 20.12 20.88 20.97 21.47

GF 4.68 6.26 7.21 8.20 8.94 9.39 9.76 9.93 10.31 10.72 12.74 14.01 15.10 15.78 16.16 16.42 16.78 17.12
LINE1st 9.68 11.75 13.02 13.68 14.35 14.84 15.01 14.78 14.02 14.41 16.17 17.41 17.93 18.58 19.21 19.26 19.17 18.79
LINE 11.91 14.12 15.21 16.07 16.54 16.65 17.14 17.48 17.03 15.66 17.24 18.27 19.03 19.60 19.90 20.48 20.76 21.00

Node2vec 12.18 14.11 15.57 16.37 17.05 17.58 17.79 17.81 18.00 15.41 17.08 18.28 19.02 19.84 20.42 20.86 21.18 21.67
G2G_oh 9.35 11.28 12.36 13.17 13.52 13.90 14.44 14.02 14.38 15.37 17.29 18.41 19.43 19.82 20.23 20.80 20.49 20.94

AROPE 10.78 12.52 13.50 14.18 14.38 14.96 15.06 14.96 14.93 13.95 15.24 16.05 16.62 17.01 17.57 17.78 17.74 18.04
VERSE 10.31 11.77 12.85 13.73 14.16 15.06 15.40 15.90 15.72 13.04 14.02 15.08 15.99 16.57 17.48 18.05 18.66 19.18
ACNE 11.60 13.92 15.02 15.74 16.40 16.95 17.14 16.98 16.85 14.99 16.80 17.87 18.61 19.33 19.86 20.34 20.71 20.94

Meta–tail2vec 11.79 14.05 15.29 16.00 16.70 17.18 17.55 17.30 17.15 15.31 17.00 17.91 18.86 19.73 20.24 20.71 21.09 21.27
PPPNE1st 12.19 14.66 16.06 16.81 17.39 17.63 18.17 18.06 18.08 16.76 18.82 20.00 20.74 21.33 21.61 22.13 22.18 22.34
PPPNE 13.70 16.05 17.46 18.57 19.12 19.55 19.46 19.87 19.40 17.56 19.40 20.66 21.75 22.21 22.81 22.77 23.47 23.28

RelaImpr 12.48 13.67 12.14 13.44 12.14 11.21 9.39 11.57 7.78 12.13 12.20 12.22 11.94 11.55 11.70 9.05 10.81 7.43

BlogCatalog
SC 11.17 14.33 16.18 17.45 18.22 18.92 19.35 19.48 19.54 26.35 29.36 31.21 32.44 33.04 33.74 34.33 34.45 34.92
GF 6.00 7.07 7.91 8.55 8.94 9.30 9.79 10.00 10.17 21.89 23.78 25.08 25.97 26.26 26.71 27.13 27.42 27.60

LINE1st 14.60 17.27 18.66 19.81 20.30 20.73 21.16 21.45 21.42 28.54 31.09 32.77 33.96 34.55 35.10 35.42 35.61 35.93
LINE 18.20 20.92 22.23 23.38 24.47 24.85 25.40 25.98 26.12 31.79 33.91 35.30 36.52 37.70 38.30 38.77 39.33 39.43

Node2vec 19.83 22.83 24.50 25.73 26.51 27.13 27.69 27.88 27.55 34.78 37.08 38.50 39.48 40.01 40.73 40.97 41.04 41.02
G2G_oh 8.61 9.72 10.41 10.97 11.23 11.53 11.64 11.80 12.05 25.60 26.86 27.54 28.19 28.27 28.55 28.59 28.74 28.91
AROPE 13.91 15.54 16.25 17.00 17.12 17.18 17.33 17.68 17.22 25.23 27.80 29.44 30.66 31.37 31.86 32.12 32.29 32.58
VERSE 16.78 20.10 21.65 22.85 23.51 23.87 24.18 24.23 24.49 30.19 33.40 35.13 36.43 36.86 37.37 37.62 37.78 38.17
ACNE 17.65 20.78 22.22 22.99 24.02 24.59 24.78 25.06 25.23 32.15 34.86 36.25 37.21 38.07 38.45 38.71 39.08 39.20

Meta–tail2vec 17.82 20.95 22.42 23.18 24.20 24.80 25.04 25.35 25.16 32.49 35.22 36.64 37.60 38.48 38.87 39.12 39.48 39.62
PPPNE1st 18.55 21.54 22.90 23.83 24.49 24.97 25.39 25.51 25.27 36.99 39.16 40.26 41.01 41.31 41.66 41.95 42.04 42.18
PPPNE 21.91 24.88 26.35 27.16 28.18 28.40 28.86 28.85 29.02 37.04 39.25 40.28 41.09 41.63 42.04 42.32 42.36 42.72

RelaImpr 10.49 8.98 7.55 5.56 6.30 4.68 4.23 3.48 5.34 6.50 5.85 4.62 4.08 4.05 3.22 3.30 3.22 4.14

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
the best result of baseline methods in Macro-F1 and
3:22% � 12:22% (average 7:67%) relative improvement in
Micro-F1. It demonstrates that our model can learn better rep-
resentations than baselines in the classification task.
� Differing from link prediction task, PPPNE performsmuch better
than PPPNE1st, which verifies the necessity of considering
second-order proximity in this unsupervised task.
� Compared with different sparsity of training data, the relative
improvement of PPPNE over the baselines is more significant
when the training percentage decreases. It is an important
advantage for real-world applications since the labelled data
is usually limited.
108
5.4. Visualization

Visualization is another critical application of network embed-
ding. We follow a common experimental setting of previous works
[5] to visualize the learned representations of Cora citation net-
work. Firstly, we embed each node as a 128 dimensional vector
and map those vectors into the 2-D space with t-SNE. Then we
visualize each vector in Fig. 2. We use different colors on the cor-
responded points which are labelled as different categories.
Besides the visualization figure, the Kullback–Leibler divergence
is a quantitative evaluation metric, and the lower K-L divergence
indicates the better performance. The result is shown in Table 4.

Fig. 2. 2-D visualization on the Cora dataset. Each point indicates one research paper. Color of a point indicates the category of the paper, including Case Based, Genetic
Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule Learning and Theory.

Table 4
K-L divergence for the Cora dataset.

Algorithm GF Node2vec LINE2nd PPPNE

K-L divergence 2.09 0.94 0.87 0.72

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
From Fig. 2, we can see that GF is not satisfactory since all
points belonging to different categories are mixed with each other.
For LINE and Node2vec, the clusters of different categories are
formed but some parts of points are still mixed. For PPPNE, most
of categories can be intuitively distinguished and the similar nodes
are closer to each other than dissimilar nodes in the low-
dimensional space. Table 4 reports the K-L divergence of each
methods, from the result we can see PPPNE significantly outper-
forms all baseline methods, which also quantitatively demon-
strates the superiority of our method.

5.5. Sampling Strategy

In order to investigate the effect of our vertex-anchored sam-
pling strategy, we conduct several experiments on Cora network.
We compared the difference between Full loss, naive edge-based
sampling [10] and our vertex-anchored sampling strategy. Fig. 3a
and 3b show the AUC and AP score in the validation set for the link
prediction task w:r:t. the number of triplet pairs. It reviews that
both sampling strategies need about 3:72% number of pairs to
acquire the identical performance as the full loss. Moreover,
vertex-anchored sampling strategy converges faster than the naive
edge-anchored sampling. Fig. 3c shows that the vertex-anchored
sampling strategy achieves significantly lower loss.

5.6. Efficiency Analysis

To evaluate the efficiency of PPPNE, we report the running time
in Fig. 4. All experiments are conducted in a single PC with one I7
(a) AUC Score (b) AP

Fig. 3. Convergence w:r:t. sampling strategy. The result shows the vertex-

109
CPU and 128G memory. The result of Fig. 4 shows that PPPNE is
efficient, boosting the efficiency by more than 3 times over the
baselines on three large datasets. The efficiency of PPPNE proved
by experiments lays the foundation for applying PPPNE to large-
scale networks. In addition, we apply different number of CPU
cores in training to observe the efficiency variance since the asyn-
chronous algorithms are easily used in the training [47]. Fig. 4
shows the running time w:r:t. the number of CPU cores, from the
results we can find that the time cost decreases almost linearly
with increasing number of CPU cores, which shows PPPNE is able
to keep the high efficiency in the distributed environment.
5.7. Scalability

To verify the scalability of PPPNE, we conduct experiments on
synthetic networks. We first generate random networks with dif-
ferent sizes by Erdos Renyi model [48], then apply our PPPNE
model to those random networks and report the running time.
We fix the number of edges (as ten million) or the number of ver-
tices (as one hundred thousand) in the experiments. The result of
running time w:r:t. the number of nodes is plotted in Fig. 5.

In Fig. 5, we empirically observe that the running time of pro-
posed method grows linearly, verifying the scalability of our
method.
5.8. Parameter Sensitivity

In order to investigate how the hyper-parameters a; k; k0; d and
Q affect our model, we apply different values to observing the
performance variance. The result in Fig. 6 shows that our model
is not considerably sensitive to the parameters. Specifically, for
k and k0, PPPNE is insensitive within a certain range (from
0.0001 to 0.1). k and k0 are both typical L2 regularizations, using
too large value may lead to under-fitting. Relatively, a does not
limit the norm of embedding vectors and a is equivalent to the
Score (c) Loss

anchored sampling strategy converges faster and achieves lower loss.

Fig. 4. Efficiency of PPPNE. The result of left figure shows PPPNE can boost the efficiency by more than 3 times over state-of-the-art methods on BlogCatalog, MMORPG and
Gewalla networks. The result of right figure shows the speed up of PPPNE is quite close to linear in the distributed environment.

Fig. 5. Scalability of PPPNE on Erdos Renyi Networks. The result shows that PPPNE has a linear time complexity w:r:t. the number of nodes and number of edges.

Fig. 6. AUC and AP w:r:t. a; k; k0; d and Q on MMORPG.

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
weight of Eq. 2 in Eq. 4. In consequence, a possible reason why a
is more insensitive, is that those parameters learned by optimiz-
ing Eq. 4 are good enough to optimize both Eq. 2 and Eq. 3. For
embedding size d, we test it in {2,4,8,16,32,64,128}. The result
shows that PPPNE achieves a good performance even with small
embedding size, which verifies that PPPNE is effective in tackling
the complexity of network in the limit spaces. For neighbor hops
110
Q, the result shows that when Q is small, our model can also learn
a comparable embedding (Q ¼ 3 achieve the best performance).
One possible reason is that the sampling triples for a specific
node are different in changed iterations, and thus as the number
of iterations increases, even a simple sampling strategy can cover
most of the positive edges, which captures most information of
the network.

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
6. Conclusion

In this paper, we explored personalized ranking for network
embedding. We devised a ranking formulation preserving first
and second order proximity jointly, and proposed an inner-
product based method which captures more network structural
information from the distance between vertices. Our theoretical
analysis shows that PPPNE generalizes prior work based on the
matrix factorization or the neural network with a single layer.
Moreover, our framework is simple and generic, and can be easily
extended by modifying the function zi;j;kðHÞ in Eq. 1. In addition,
our method can be optimized by SGD with a vertex-anchored sam-
pling strategy. We evaluate the performance of our method in sev-
eral applications, including link prediction, vertex classification
and visualization. Extensive experimental results on different
real-world networks show that our proposed method outperforms
the existing methods significantly in all tasks in both efficiency and
effectiveness. In the future, we will study the embedding vectors
from a dynamic network, which is more common in the real world.
Dynamic network embedding methods should not only preserve
the structural information, but also pay more attention to the
development over time of the network. To build a dynamic net-
work embedding method, we need to develop effective methods
to learn the evolution patterns of a given network.
CRediT authorship contribution statement

Ge Fan: Conceptualization, Methodology, Software, Investiga-
tion, Visualization, Writing - review & editing. Biao Geng: Formal
analysis, Software, Writing - review & editing. Jianrong Tao:
Supervision, Resources. Kai Wang: Supervision, Validation. Chang-
jie Fan: Project administration, Funding acquisition. Wei Zeng:
Writing - review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The work is supported by the National Natural Science Founda-
tion of China (61872062), and Fundamental Research Funds for the
Central Universities (2672018ZYGX2018J050).

References

[1] P. Cui, X. Wang, J. Pei, W. Zhu, A survey on network embedding, TKDE 31 (5)
(2019) 833–852.

[2] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, SIGKDD (2014) 701–710.

[3] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions, TKDE 17 (6)
(2005) 734–749.

[4] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec, in: WSDM, 2018, pp.
459–467..

[5] A. Bojchevski, S. G++nnemann, Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking, in: ICLR, 2018, pp. 1–13..

[6] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian
personalized ranking from implicit feedback, in, UAI (2009) 452–461.

[7] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326..

[8] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural computation 15 (6) (2003) 1373–1396.

[9] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, A.J. Smola,
Distributed large-scale natural graph factorization, in: WWW, 2013, pp. 37–
48..
111
[10] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information
network embedding, in: WWW, 2015, pp. 1067–1077..

[11] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in:
SIGKDD, 2016, pp. 855–864..

[12] S. Cao, W. Lu, Q. Xu, Grarep: Learning graph representations with global
structural information, in: CIKM, 2015, pp. 891–900..

[13] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, S. Yang, Community preserving
network embedding., in: AAAI, 2017, pp. 203–209..

[14] M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity preserving graph
embedding, in: SIGKDD, 2016, pp. 1105–1114..

[15] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, W. Zhu, Arbitrary-order proximity
preserved network embedding, in: SIGKDD, 2018, pp. 2778–2786..

[16] J. Chen, Z. Gong, W. Wang, W. Liu, Hns: Hierarchical negative sampling for
network representation learning, Information Sciences 542 (2021) 343–356.

[17] Z. Liu, W. Zhang, Y. Fang, X. Zhang, S.C. Hoi, Towards locality-aware meta-
learning of tail node embeddings on networks, in: CIKM, 2020, p. 975–984..

[18] B. Zhang, J. Xiang, X. Wang, Network representation learning with ensemble
methods, Neurocomputing 380 (2020) 141–149.

[19] S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph representations,
in: AAAI, 2016, pp. 1145–1152..

[20] L. Heck, H. Huang, Deep learning of knowledge graph embeddings for semantic
parsing of twitter dialogs, in: GlobalSIP, 2014, pp. 597–601..

[21] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: SIGKDD,
2016, pp. 1225–1234..

[22] Y. Yang, H. Chen, J. Shao, Triplet enhanced autoencoder: model-free
discriminative network embedding, in: IJCAI, AAAI Press, 2019, pp. 5363–
5369..

[23] K. Tu, P. Cui, X. Wang, P.S. Yu, W. Zhu, Deep recursive network embedding with
regular equivalence, in: SIGKDD, 2018, pp. 2357–2366..

[24] F. Li, Z. Zhu, X. Zhang, J. Cheng, Y. Zhao, Diffusion induced graph representation
learning, Neurocomputing 360 (2019) 220–229.

[25] A. Fathy, K. Li, Done: Enhancing network embedding via greedy vertex
domination, Neurocomputing 410 (2020) 71–82, https://doi.org/10.1016/j.
neucom.2020.05.055.

[26] Q. Dai, Q. Li, J. Tang, D. Wang, Adversarial network embedding, in: AAAI, 2018,
pp. 2167–2174..

[27] S. Pan, R. Hu, S.-F. Fung, G. Long, J. Jiang, C. Zhang, Learning graph embedding
with adversarial training methods, TCYB 50 (6) (2019) 2475–2487.

[28] S. Zhu, J. Li, H. Peng, S. Wang, P.S. Yu, L. He, Adversarial directed graph
embedding, in: AAAI, 2021, pp. 1–8..

[29] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: ICLR, 2017, pp. 1–10..

[30] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying graph
convolutional networks, in: ICML, 2019, pp. 6861–6871..

[31] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, J. Pei, Am-gcn: Adaptive multi-channel
graph convolutional networks, in: SIGKDD, 2020, p. 1243–1253..

[32] J. You, R. Ying, J. Leskovec, Position-aware graph neural networks, in: ICML,
2019, pp. 7134—-7143..

[33] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face
recognition and clustering, in: CVPR, 2015, pp. 815–823..

[34] S. Zhou, H. Yang, X. Wang, J. Bu, M. Ester, P. Yu, J. Zhang, C. Wang, Prre:
Personalized relation ranking embedding for attributed networks, in: CIKM,
2018, pp. 823–832..

[35] S. Wang, J. Tang, C. Aggarwal, Y. Chang, H. Liu, Signed network embedding in
social media, in: SDM, 2017, pp. 327–335..

[36] C. Yang, Z. Liu, D. Zhao, M. Sun, E.Y. Chang, Network representation learning
with rich text information, in: IJCAI, 2015, pp. 2111–2117..

[37] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo, J.P.
Mesirov, Molecular signatures database (msigdb) 3.0, Bioinformatics 27 (12)
(2011) 1739–1740.

[38] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and
performance: A survey, KBS 151 (2018) 78–94.

[39] A. Tsitsulin, D. Mottin, P. Karras, E. Müller, Verse: Versatile graph embeddings
from similarity measures, in: WWW, 2018, pp. 539–548..

[40] J. Chen, Z. Gong, Q. Dai, C. Yuan, W. Liu, Adversarial learning for overlapping
community detection and network embedding, in: ECAI, 2020, pp. 1–8..

[41] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude, COURSERA: Neural networks for machine
learning 4 (2) (2012) 26–31.

[42] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: AISTATS, 2010, pp. 249–256..

[43] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, K. Gai, Deep
interest network for click-through rate prediction, in: SIGKDD, New York, NY,
USA, 2018, pp. 1059–1068..

[44] Z. Zhang, P. Cui, H. Li, X. Wang, W. Zhu, Billion-scale network embedding with
iterative random projection, in: ICDM, 2018, pp. 787–796..

[45] Y. Lu, C. Shi, L. Hu, Z. Liu, Relation structure-aware heterogeneous information
network embedding, in: AAAI, 2019, pp. 4456–4463..

[46] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, C.-J. Lin, Liblinear: A library for
large linear classification, JMLR 9 (Aug) (2008) 1871–1874..

[47] F. Niu, B. Recht, C. Re, S.J. Wright, Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent, in: NIPS, 2011, pp. 693–701..

[48] L. Erd}os, A. Knowles, H.-T. Yau, J. Yin, et al., Spectral statistics of erd}os–rényi
graphs i: local semicircle law, The Annals of Probability 41 (3B) (2013) 2279–
2375.

http://refhub.elsevier.com/S0925-2312(21)01736-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0010
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0010
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0015
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0015
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0015
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0040
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0080
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0080
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0120
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0120
https://doi.org/10.1016/j.neucom.2020.05.055
https://doi.org/10.1016/j.neucom.2020.05.055
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0135
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0135
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0190
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0190
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0240
http://refhub.elsevier.com/S0925-2312(21)01736-7/h0240

G. Fan, B. Geng, J. Tao et al. Neurocomputing 472 (2022) 103–112
Ge Fan is currently a researcher at Tencent. He received
his M.Sc. degree in Computer Science from University of
Electronic Science and Technology of China . He
obtained his B.Sc. degree in Information and Computing
Science and B.B.M. degree in Financial Management
from Sichuan Agricultural University, China. His
research interests include Data Mining, Deep Learning
and Recommender Systems.
Biao Geng is currently a software engineer at Alibaba
Group. He received his M.Sc. degree from Carnegie
Mellon University and B.Sc degree from Zhejiang
University. His research interests include machine
learning and distributed systems.
Jianrong Tao received the BS degree in computer sci-
ence and technology from Huazhong University of Sci-
ence and Technology, Wuhan, China, in 2014 and the
MS degree in computer science and technology from
Zhejiang University, Hangzhou, China, in 2017. He is
currently working ar NetEase Fuxi AI Lab, Hangzhou,
China. His research interests include data mining,
machine learning, network analysis and user profiling.
112
Kai Wang Graduated from the University of Electronic
Science and Technology of China, with 4 years of
experience in Recommendation System Algorithm
Engineer, I have published many papers as the first
author in CIKM and AAAI, and now works in Fuxi Lab-
oratory of Netease game, mainly studying the cross
fields of recommendation system, combinatorial opti-
mization and reinforcement learning.
Changjie Fan received the BS and PhD degree in Com-
puter Science from University of Science and Technol-
ogy of China (USTC), in 2003 and 2008, respectively. He
is currently the director of NetEase FUXI AI Lab. His
research interest include multiagent systems, rein-
forcement learning, natural language processing and
knowledge discovery.
Wei Zeng received his Ph.D. degree at the University of
Electronic Science and Technology of China, Chengdu,
China, in 2015. Currently, he is an associate professor of
Department of Computer Science at University of Elec-
tronic Science and Technology of China. He has pub-
lished data mining-related papers in leading journals
like Expert Systems with Applications, Knowledge and
Information Systems. His main research interests
include the data mining, network science and recom-
mender systems.

	PPPNE: Personalized proximity preserved network embedding
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Methodology
	4.1 Preserving Proximity by Personalized Ranking
	4.1.1 First-order Proximity Preserving
	4.1.2 Second-order Proximity Preserving
	4.1.3 Combined Preserving

	4.2 PPPNE Model

	5 Experiments
	5.1 Experiment Setting
	5.1.1 Datasets
	5.1.2 Baseline Methods
	5.1.3 Parameter Settings

	5.2 Link Prediction
	5.3 Vertex Classification
	5.4 Visualization
	5.5 Sampling Strategy
	5.6 Efficiency Analysis
	5.7 Scalability
	5.8 Parameter Sensitivity

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

