Field-aware Variational Autoencoders for
Billion-scale User Representation Learning

Ge Fan
Tencent Inc.
Shenzhen, China
gefan @tencent.com

Chaoyun Zhang
Tencent Inc.
Shenzhen, China

Zenglin Xu
Harbin Institute of Technology (Shenzhen)
Shenzhen, China
xuzenglin @hit.edu.cn

Abstract—User representation learning plays an essential role
in Internet applications, such as recommender systems. Though
developing a universal embedding for users is demanding, only
few previous works are conducted in an unsupervised learning
manner. The unsupervised method is however important as most
of the user data is collected without specific labels. In this
paper, we harness the unsupervised advantages of Variational
Autoencoders (VAEs), to learn user representation from large-
scale, high-dimensional, and multi-field data. We extend the
traditional VAE by developing Field-aware VAE (FVAE) to model
each feature field with an independent multinomial distribution.
To reduce the complexity in training, we employ dynamic hash
tables, a batched softmax function, and a feature sampling
strategy to improve the efficiency of our method. We conduct
experiments on multiple datasets, showing that the proposed
FVAE significantly outperforms baselines on several tasks of
data reconstruction and tag prediction. Moreover, we deploy the
proposed method in real-world applications and conduct online
A/B tests in a look-alike system. Results demonstrate that our
method can effectively improve the quality of recommendation.
To the best of our knowledge, it is the first time that the VAE-
based user representation learning model is applied to real-world
recommender systems.

Index Terms—User Representation Learning, Recommender
Systems, Lookalike Systems, Variational Autoencoder

I. INTRODUCTION

Understanding users’ interests is the precondition to im-
prove their quality of experience in a variety of Internet
applications. This requires to extract knowledge from users’
behavior data, so as to discover their latent interested topics
and recommend appropriate contents to the targeted audi-
ences. Since the common user features are usually sparse and

* Corresponding author.

Luyu Peng leads the project in Tencent.

This work was supported in part by National Natural Science Foundation
of China under Grant 62102265, in part by the Open Research Fund from
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ),
under Grant GML-KF-22-29, and in part by the Science and Technology
Development Fund, Macau, SAR, under Grant FDCT/0068/2020/AGJ.

Zenglin Xu has been supported by a key program of fundamental re-
search from Shenzhen Science and Technology Innovation Commission (No.
JCYJ20200109113403826).

vyokkyzhang @tencent.com

Yingjie Li
Tencent Inc.
Shenzhen, China
wallaceyjli @tencent.com

Junyang Chen*
Shenzhen University
Shenzhen, China
junyangchen @szu.edu.cn

Baopu Li
Baidu USA
Sunnyvale, USA
baopuli @baidu.com

Luyu Peng!
Tencent Inc.
Shenzhen, China
louispeng @tencent.com

Zhiguo Gong
University of Macau
Macau, China
fstzgg@um.edu.mo

high-dimensional, heavy feature engineering is necessary for
preprocessing in modeling users’ behaviors. Otherwise, those
high-dimensional features will lead to the curse of dimension-
ality [1], which will significantly increase the complexity of
the model.

To mitigate this issue, user representation learning [2] is
proposed to reduce the reliance on feature engineering. It
allows to learn a low-dimensional latent representation for
individual users from the original high-dimensional counter-
parts by designing mapping functions. Recently, deep learn-
ing based techniques have become popular due to the non-
linear representation ability, and have been proven effective
in many real-world applications such as online games [3],
recommender systems [4], and e-commerce ecosystems [5].
Nevertheless, most of existing deep learning approaches learn
user representations with an end-to-end supervised manner,
and only use single-source data collected at the same platform.
As users’ preference diversifies from different scenes and plat-
forms, adopting single-source data may not comprehensively
profile the users. Therefore, it is demanding to develop a
universal embedding learner to capture users’ profile from
different perspectives to support various applications.

To fulfill the requirement, learning user representation in
an unsupervised manner becomes a natural solution, as it can
learn user representation from original data without specific
labels. This is important since most of the data is unlabeled
in real-world applications. For example, the performance of
an online lookalike system relies on the quality of user
representations. Moreover, a universal embedding of a user is
useful for the entire system [6], [7]. Inspired by the success in
the unsupervised image modeling and generation, Variational
Autoencoders (VAEs) are playing an important role in learning
representation from sparse data [8], [9], as they demonstrate
outstanding modeling capacity with its non-linear probabilistic
latent-variable. However, acquiring universal representation by
VAEs from massive user profile data is not straightforward.
We recognize there exist two challenges of learning represen-
tation from large-scale user data from multiple perspectives.

Specifically:

1) Multi-field fusion: Early research has shown that exploit-
ing features in different fields is beneficial for click-through
rate prediction. This has become a default process in recom-
mender systems that embrace multi-field features [10]-[12].
Nevertheless, only few of them employ multi-field adaption
in an unsupervised manner. Regarding VAEs, although the
encoder can learn high-level representations from different
fields by non-linear deep neural networks (DNNs), most of
them neglect the importance of different fields in the decoder.
However, the well-suited modeling between different fields in
the decoder can benefit the user representations learning of
VAE:s. In addition, the importance of different fields varies in
a system, which makes it difficult for fusing [13], [14].

2) Computational cost: Many Internet applications require
to process billions of users, where billion-scale features exist
and need to be processed in a system. For example, the
number of Tencent’s ! monthly active users of smart device
is over 1 billion, which generate tremendous amount of data
with massive features. Thus, it is extremely computationally
expensive to handle for current methods. To mitigate this
issue, recent research adopts feature hashing to handle large-
scale features [15], while this leads to the collision problem
and is not efficient for billion-scale samples. Processing such
magnitude of data within acceptable time and computing
resources remains a challenge in industry.

To harness the advantages of both unsupervised learning
and VAE, in this paper, we propose Field-aware Variational
Autoencoders (FVAE), a novel VAE structure for user repre-
sentation learning. The FVAE extends the traditional VAE by
modeling each field of feature with independent multinomial
distribution, to capture the diversity of information among
different fields. This enables to jointly fuse knowledge in the
encoder as well as decoder. In order to reduce the computation
complexity, the FVAE first employs dynamic hash tables to
efficiently transform the sparse inputs into dense tensors, then
employs the batched softmax function to accelerate estimating
the distribution of output. For those fields that are very
sparse, the FVAE employs a feature sampling strategy, which
randomly samples features again with a uniform distribution.
This strategy is well-suited for user representation learning
from features that follow the power-law distribution, as it
improves the performance of other sampling strategies, such
as Frequency and Zipfian [16]. In summary, the contributions
are as follows:

« Effectiveness. To the best of our knowledge, we are the
first to theoretically extend VAEs for multi-field data with
the independent multinomial distribution, which captures
the diversity of information among different fields, and
jointly fuse knowledge in the encoder as well as the
decoder. The results in section V-B and section V-C verify
the efficiency of the proposed method.

« Efficiency. We propose to utilize several strategies (i.e.,
dynamic hashing, batched softmax, feature sampling) to

Uhttps://www.tencent.com/en-us/

improve the effectiveness of the proposed methods. Re-
sults in Table V show that the proposed method acquires
thousands of speedup improvements in the training step
compared with the original Mult-VAE, These proposed
contributions make it possible to learn representations
with billion-scale users within hours.

o Practicality. We design a framework to apply the pro-
posed model in real-world recommendation systems. The
learned user representations of the FVAE can be used in
various downstream tasks, such as the matching step and
the look-alike systems. Online A/B test shows that user
embedding based on FVAE can improve the recommen-
dation quality of our look-alike systems. To the best of
our knowledge, it is the first time that the VAE has been
deployed in a billion-scale industrial look-alike systems.

II. RELATED WORKS
A. VAEs on Sparse Data.

Inspired by the success in unsupervised learning, VAEs and
their variants are applied in different types of data, including
text [17], [18], graph [19]-[21], and recommender systems
[8], [22], [23]. Vanilla VAEs [24], [25] are latent variable
models that can approximate complex distributions. It can be
employed as a representation learning . Beta-VAE [26] learns
disentangled representations by a regularization coefficient 3
to control the Kullback-Leiber (KL) divergence term.

Recently, Liang et al. [8] extended VAEs to collaborative
filtering by modeling implicit feedback data with multino-
mial likelihoods. They also utilize the annealing technique
to avoid underfitting when learning with large, sparse, and
high-dimensional data. Sachdeva et al. [22] exploited rich
information of user profiles, and model temporal data with
RNN to improve the accuracy of VAEs. Sankar et al. [21]
proposed a generalizable VAEs framework, which utilized
graph neural network architectures to selectively exploit in-
formation from social networks. Shenbin et al. [23] propose
a Recommender VAE (RecVAE) to improve the Mult-VAE
based model. Time-Aware Sequential Autoencoder (TASA)
[27] is proposed to learn user representations by modeling the
importance of temporal information within user sequences. It
utilizes a long short-term memory (LSTM) network to embed
the user sequence of activities. This method largely focuses
on the user activities, while ignoring other important user
profiles. The RecVAE designs a novel encoder architecture
with a composite prior distribution for the latent distributions.
It also develops a user-specific 5 to control the strength
of KL term. Zheng et al. [28] employ a VAE in social
recommendation by adopting an attention structure to feed
the embedding information into an inherited VAE structure.
Yu et al. [29] employ a Adversarial Variational Bayes (AVB)
framework based on adversarial training. They show that
Generative Adversarial Network (GAN) based reconstruction
loss can further improve the performance of the VAE. Xie et
al. [30] present the Adversarial and Contrastive Variational
Autoencoder (ACVAE) for the sequential recommendation.
The ACVAE uses the adversarial training under the AVB

framework for sequence generation to improve the quality of
latent variables. However, those methods do not adapt VAEs
to the multi-field profiles.

B. User Representation Learning.

Users’ representations can be extracted from different
sources, such as static features [31], [32] and dynamic be-
haviors [33].The matrix factorization (MF) based collabora-
tive filtering methods are able to learn users’ representations
efficiently [34]. For instance, the probabilistic MF (PMF) is
used as a probabilistic interpretation of the traditional MF
method. It scales linearly with the number of ratings [35].
Furthere, a Bayesian treatment is applied in the PMF to
exploit the Markov Chain Monte Carlo (MCMC), to perform
approximation inference [36].

Deep learning techniques are widely employed for rec-
ommender systems [37]-[39]. As skip-gram models (e.g.
word2vec) [40] had made great achievements in various
linguistics tasks, they have been further employed to learn
user representations. Barkan et al. [41] present a item-
based collaborative filtering model called Item2Vec to produce
embedding for items in a latent space. In the Item2Vec model,
a user representation can be aggregated by its context historical
items. An advanced version of Item2Vec [42] employs a
attention mechanism to produce neural attentive users’ repre-
sentations. Enhanced Graph Embedding with Side information
(EGES) [43] is a graph-based method, which constructs an
item graph from users’ behavior sequences, and learns the
item representations by a weighted Skip-Gram model. The
EGES method learns representations of items only, whereas
user information is largely overlooked. Therefore, employing
EGES for modelling the correlations between items and users
becomes difficult.

Another effective way for improving the performance of
recommendation is to develop the multi-field information of
users/items profiles [10], [13], [44] . Covington et al. [44] ap-
plied DNNs to build user embeddings from rich-field features.
The Deep Structured Semantic Models (DSSM) [45], [46] also
utilizes DNNs to concurrently extract users’ and items’ high-
level representations. Zhou et al. [12] introduced the attention
mechanism to learn the interest representation of underlying
user behaviors. Li et al. [13] represented users with multiple
representation vectors by the Capsule Network [47]. Chen et
al. [48] captured the sequential signals from users’ behavior
sequences by using the transformer model. Nevertheless, most
of those works only focused on learning user embedding
with end-to-end models from single source data. This leads
to modest generalization of the representation, which will
affect the performance of downstream tasks [49]. Conure
[50] aims to address the catastrophic forgetting problem in
the representation learning by transfer learning. It focuses on
the finetuning stage in the learning process with a pretrained
temporal convolutional network (TCN) model. Similar to the
TASA, the Conure method trains with the user activities only,
while overlooking other important information.

Decoder

Encoder

0

Fig. 1. The overall architecture of the proposed FVAE. Input features of
different fields are fed to the encoder to learn the latent representation.
The decoder accepts the sample of the latent representation to reconstruct
original inputs. Each field is modeled by an independent distribution. x4 and o
respectively denote the mean and the standard deviation of the latent learned
representation. ¢ ~ N'(0,1) is the sample noise of the reparametrization
trick.

III. PROBLEM FORMULATION

User representation learning is a sub-task of user modeling
that aims at learning a latent low-dimensional embedding
for each user from its features to support subsequent ap-
plications, e.g., recommender systems. We define the user
feature matrix as U = [ug, ug, ,un|’, where N is the
number of users. Features are grouped in different fields.
For each user i, we denote all features from K fields as

u; = [(F)T,(FAT, .., (FET)T, where FF is a multi-
hot vector embracing the features in the k-th field. For each
Ff = [FF,,FFy, - 7Fi’ka}T . F}'; = 1 means that the i-th

user has the j-th feature of k-th field, and 0 means the user
do not have the feature. We also define J;, as the number of
the features of field &, and J = Zk Ji to represent the total
number of all features.

In this paper, we consider the user representation learning
task as a probability-based unsupervised learning problem.
Given features of users U € NV*/ We aim at learning a
mapping f : u; — z; for each user i, where z; denotes the
representation for the variables w;, and z; = N (p;,%;) is
a Gaussian distribution. The mean value p; represents the
position of user 7 in the embedding space, and X; is the
uncertainty vector of user i. The objective of the mapping f
is to extract meaningful information from the original feature
space for improving the performance of subsequent tasks.

IV. PROPOSED METHOD

In this section, we introduce the designed structure, in-
ference process, learning algorithm of the proposed FAVE
in large-scale data, as well as the deployed solution of the
industrial system.

A. Field-aware Variational Autoencoder

We show the overall architecture of the Field-aware Vari-
ational Autoencoder (FVAE) in Fig. 1. The FVAE is an

improved variant of VAEs, which consists of an encoder and a
decoder. The encoder learns a non-linear mapping from input
features wu; to a latent distribution z;, whereas the decoder
reconstructs the output u; from the latent distribution z;. In
this paper, the representation of user ¢ is modelled by the latent
distribution z;. The dimension of the input and output layer
are set to the same. The objective of the FVAE is to minimize
the reconstruction error between input u; and output u;. We
assume each field of observed feature vectors FF follows
an independent multinomial distribution. For each user i, the
D-dimensional latent representations z; is transformed via a
sampling from a Gaussian prior distribution, defined as:

7 (21) o exp{fbk(21>§7 (M

EF ~ Mult(NF, 7% (2)),

where Nf = = >_; F}; denotes the total number of observed
features in field k by user i, and 7* is the corresponding
probability for each feature of field k£ . The softmax function
is employed to normalize the probability vector 7% (z;) over
the features in field k. In our works, fgx () is instantiated as

the non-linear multilayer perceptron (MLP) with parameters
"

FF = £, (fra (- fa(f1(20)))),)

where f% , denotes the mapping function for the output layer
of k-th field, f; denotes the j-th hidden layer of the decoder.
Note that the parameters of the MLP in the decoder are shared
across all fields, excluding the output layer. By assuming
the probability of all feature fields is independent, the log-
likelihood of data of user ¢ is equivalent to averaging the log-
likelihood of all fields, formulated as:

=logpy([F}, F?,...... FX|z)

3

log pg (u;2;)

1 3
- K ZIngek(Fik|Zi)' ©)
k
The log-likelihood for field k of user ¢ is therefore:
log po(FF|2;) Z logmh()

B. Variational inference

We employ the variational inference to estimate parameters
of FVAEs. The first step of the inference process is to compute
the lower-bound of the log marginal likelihood from the input
data [51]. Following the work in [8], the lower-bound of the
log marginal likelihood can be represented as:
log p(ui; 0) > By, 2 u) [log po(uil|zi)] — K L(qe(zilui)|[p(zi))

= [fo(ui; 9, (b)a
&)
where ¢4 is the variational distribution. The gy is set to be a
fully factorized diagonal Gaussian distribution. In the FVAE,

the mean and standard deviation of ¢(z;) are approximated by
a MLP model g4(-) parametrized by ¢:

9o (ui) = [ng(us), 04(ui)] € R*P,
= [gu(gLe(---gz(gl(uz')))%go(gLe(---92(91(%))))](76)

where g,,, g, and g; denote the mapping functions for the
mean, standard deviation and the [-z# hidden neural layer.

The evidence lower bound (ELBO) of Eq. (5) is composed
of two terms: the first term is the reconstruction error and
the second term is the regularization. We introduce a hyper-
parameter J to control the strength of regularization, and
apply annealing to tune the parameter. In addition, since the
full features are grouped by multiple fields, we introduce
another hyper-parameters o = {a, g, ..., a } to balance the
reconstruction error of different fields. Combining Eq. (5), we
can represent the ELBO as:

L(ui;0,0) = ‘Zak Eq, (2 us) 10g o (F|2:)]

— B KL(qg(2ilui)|lp(z:)),

where o is a hyper-parameter controlling the weight of
reconstruction loss for field k. || = >, |oy| is the normalized
weight to ensure that the sum of weights is equal to 1. 3
controls the weight of regularization. FVAE can be learned
by optimizing Eq. (7) with the Stochastic Gradient Descent
(SGD) once the reparametrization trick [24], [52] is used.

e 7

C. Learning with big data

The complexity of the optimizing Eq. (7) is O(J x (Dr, +
Dr,)), where Dy and Dy, denote the number of neurons
for the first encoder hidden layer and the last decoder hidden
layer. As the input (output) layer in the encoder (decoder)
has the same dimension as the feature space, scales of Dy,
and Dy, are non-trivial. This means that it is infeasible
to deploy in the industrial scenario, as training the model
with billion-scale users and features will require unacceptable
time. Simply using the SGD for training will hinder the fast
product iterations in the Internet industry. In addition, the
users’ features are constantly changing and increasing with
new data sources available, the traditional VAEs cannot satisfy
such requirements. To mitigate these issues, we propose to
reduce the training complexity from both input and output
perspective, by using dynamic hash tables, the batched softmax
function, and the feature sampling, as detailed below.

1) Dynamic Hash Table: The computational complexity of
the encoder highly depends on the first layer of DNNs. In
order to reduce the complexity of the process, we create a
dynamic hash table to achieve the fast look-up [53]. Specifi-
cally, we create a hash table for each feature field to map the
feature IDs into different weight matrices. Given the ID of a
feature field, the encoder looks up the corresponding weights
for each feature. The output of the first layer is then obtained
by summing all embedding outputs, which is equivalent to the
original output of the first layer.

When dealing with the unknown feature ID, the embedding
weights of this ID are randomly initialized and pushed into
the hash table. The key will be dynamically incremented
when a new key is encountered. In the training process,
we initialize the hash tables with empty keys, and they will
grow dynamically with the training. This addresses the feature
growth problem as well as the collision compared to feature
hashing, which allows the encoder to handle inputs with
different size.

Generally, for user i, N; = & Ni’c < J holds, as the input
data is sparse and the complexity of looking up a weight is
O(1). By using this method, the complexity of Eq. 7 reduces
to O(N x Dy, + J x Dp,), where N denotes the average
number of observed features.

2) Batched Softmax: We also reduce the complexity of
the output layer by using the batched softmax function. The
legacy softmax function requires to compute the values over
all neurons of each feature field. This is quite expensive when
the output space is large. To mitigate this issue, we substitute
the softmax function with the new batched softmax. This can
be viewed as a special case in sampled softmax [54]. The
batched softmax function only samples features that include
at least one user to compute the softmax logits in a training
batch. Specifically, in a training batch, we first select a subset
of features which is included by at least one user of the batch.
Subsequently, we calculate the output of softmax logits, and
approximate probability by a normalized function. We denote
N, as the mean of the number of observed features in a batch.
The batched softmax enables to reduce the complexity of Eq.
710 O(N x Dy, + Ny x Dp,,). This complexity reduction is
significant, as the feature space is usually sparse and follows
a power-law distribution, i.e., N < N, < J. This means that
only a minority of features appear frequently in the full feature
set.

3) Feature Sampling: Although the batched softmax can
reduce the complexity, training the proposed model on large-
scale data remains time-consuming. We, therefore, propose
feature sampling to further reduce the training complexity. As
certain feature fields are super sparse (e.g. topic tag), perform-
ing computation over these fields becomes unnecessary. We
propose an inter-batched sampling strategy for the sparse fields
to address this problem. Specifically, given a field of feature
set, we first employ the batched softmax function to filter those
features with no users included. Subsequently, we sample the
remaining feature with a probability r. By doing this, the
feature size of the current batch is further reduced. Although
some long-tail features may be missing in the training process,
a suitable sampling rate r can improve the generalization of
the proposed method. Note that this feature sampling is only
used in the training process. The overall training process is
shown in Algorithm 1.

D. Real-world Deployment

The overall framework of the FVAE based embedding sys-
tem for real applications is shown in Figure 2. The framework

Data Construction
it st
' - 1
[1
: Kandian :
1 | Behavior Behavior | <
, \Sequences Sequences) |
A N N !
' '
H Kandian Kandian '
E Article Video QQPBrlt_)lwser H
' Profiles Profiles roliies ,
I rwemeymrn i eyewssnseseee S e vsessmseme '
Offline .
Fmmm e P REERC L L e Flowing Tasks
| |
E Distributed Inference E Distributed Training i
' '
!] '
E v : Retrieval
' |_server server || 1| server server |,
.
: Vo '
Ranking
> Lookalike
[kl "
IModel 1
1
1
1 . ’ Push
1|_server server :
e :
Online

Fig. 2. The framework of real applications.

includes three modules: a data construction module, an offline
module, and an online module.

o Data construction module. This module constructs user
profiles from original server logs, such as Kandian > and
QQ Browser?. In the system, logs collected from different
sources are projected to different fields of features, and
subsequently fed into the offline module.

o Offline module. This module includes offline training,
inference and data storage structures. We first train our
FVAE with multi-field user profiles passed from data
construction module, then infer the embeddings of each
user. The embeddings are saved in the storage system,
e.g., HDFS, and will be used for downstream tasks.

o Online module. It contains model serving Proxy and high
performance cache, e.g., Redis, so as to adapt to different
applications. The model inference is deployed on the
model serving proxy. High performance cache enables
faster user embedding look-up for different applications.

V. EXPERIMENT

In this section, we show experiments conducted to answer
the following research questions:

Zhttps://sdi.3g.qq.com/v/2019111020060911550
3https://browser.qq.com

ALGORITHM 1: Training a FVAE.
Input:
U: Feature matrix.
B: Batches for training.
r : Sampling ratio.
randomly initialize 6, ¢;
while not converge do
for b €{1,...,B} do
Sample a batch of users U
for k € {1,...,K} do
get unique feature set F* for field k&

if field k should sampling then
random sampling sampled feature set

FE .. form F* with sampling rate r
else
| =
end
end
for i € U, do

Sample € and compute z; via
reparametrization trick

for k€ {1,..., K} do

Compute the log-likelihood for field &

with z; and FE

end
Combine the log-likelihood from all fields
Compute noisy gradient Vy and V4 with z;

end

Average noisy gradients from the batch

Use back propagation to optimize model
parameters 6, ¢.

end

end

is applied in feature matrix U to embed each user as a
latent k-dimensional vector.

LDA [56] . It is a topic model used for discovering latent
topics from a collection of vectors. We implement in a
batch update form. By applying LDA, the feature matrix
U is decomposed into a user-topic matrix and a topic-
feature matrix. We consider the ¢ —th vector of user-topic
matrix as the representation of user i.

Denoising Autoencoders with a multinomial likelihood
(Mult-DAE) [8]. The Denoising Autoencoder (DAE)
reduces overfitting by training AEs with corrupted data.
Mult-DAE is a variant of DAE by using a multinomial
likelihood for the data distribution. We follow a common
setting to apply dropout in the input layer.

VAE with a multinomial likelihood (Mult-VAE) [8]
. Mult-VAE models the distribution with a multinomial
likelihood, which is similar as the Mult-DAE. For the
Mult-DAE and Mult-VAE, we consider the output values
of the encoder structure as the representation of each user.
Item2Vec [42] . Item2Vec is a state-of-the-art embedding
model for learning item representations. Its variants are
wildly used in real-world applications. In this work, each
feature is regarded as an item fed into a skip-gram model
to learn a latent vector. The representation vector of a
user is then aggregated by the average of the features.
We apply the negative sampling in the training process.
RecVAE [23]. The RecVAE introduces a new composite
prior distribution for the latent distribution z. It also
use a user-specific § in the annealing to improve the
performance of VAE-based models.

Job2Vec [57]. The Job2Vec is a novel multi-view rep-
resentation learning model for representing Job Title
Benchmarking. It has used for reference with our pro-
posed multi-field user profiles.

RQ1: Can our proposed FVAE outperform the state-of-
the-art methods for downstream tasks including million
and billion datasets?

RQ2: How do the key hyper-parameter settings affect
on the performance of our proposed FVAE? How does
the proposed sampling strategy help improve the perfor-
mance?

RQ3: Can the proposed FVAE learn user representation
efficiently in large scale data?

RQ4: How to deploy the FVAE in real-world applica-
tions?

2) Datasets: In order to verify the effectiveness and effi-
ciency of the proposed method, we conduct the experiments
on several industrial large-scale datasets collected by the
applications of Tencent. We show details of all datasets in
the Table I.

« Kandian (KD). We construct this profile dataset based
on Kandian users’ behaviors. Users are classified into 4
fields, namely first channel IDs (ch), second channel IDs
(chs), third channel IDs (chs) and tags. For each user, we
construct each field using his top 512 weights with the
highest values.

e QQ Browser (QB). This dataset has similar character-
istics with KD dataset and is collected by QQ Browser

A. Experiment Settings

1) Baseline Methods: We compare our proposed method
with several existing methods, including Principal Component
Analysis (PCA), Latent Dirichlet Allocation (LDA) and dif-
ferent VAEs. Specifically,

o PCA [55] . It is one of the most wildly used method for
dimension reduction. This method projects data to a lower
dimensional space by Singular Value Decomposition. It

users. It also contains the same 3 channel-level IDs and
tags.

Short Content (SC). We collect this million-scale dataset
from Kandian Short Content users to compare the base-
line methods with the proposed FVAE. This dataset
contains the top 128 highest weighted tags for each user.

3) Parameter Settings: We employ two wildly used metrics,
Area Under the ROC Curve (AUC) and mean Average Preci-

TABLE I
STATISTICS OF THE BENCHMARK DATASETS.
Dataset #Users #Fields N J
KD 0.65 billion 4 193.68 1.32 billion
QB 0.33 billion 4 123.69 0.52 billion
Ne 1 million 4 211.16 130159

sion (mAP) [12], [37], [58], [59] to evaluate the performance
of the FVAE. We partition the dataset into two parts, where
80% 1is used for training and the rest 20% for testing. We apply
the feature sampling strategy in tag field, and test the sampling
ratio » € {0.01,0.05,0.1,0.2,0.4,0.6,0.8}. For PCA and
LDA, we set the latent dimension D to 128. For Mult-DAE,
Mult-VAE, RecVAE and FVAE, we uniformly set the encoder
structure to 256 — 128, and set the decoder structure to
128 — 256.

4) Summary of this section: In order to answer the proposed
research questions, we conduct several experiments in this
section.

Detailedly, for answer RQ1, we choose two popular tasks,
namely Reconstruction and Tag Prediction to compare the
FVAE with baselines. Our experiments perform at different
scales real-word datasets. Results are reported in Section V-B
and Section V-C. We exclude the Mult-DAE, the Mult-VAE,
the RecVAE and the Job2Vec in the experiments on billion-
scale datasets for their scalability issues. We also conduct a
case study to visualize the learned user representations in a
billion-scale dataset.

To answer RQ2, we conduct experiments to test the key
hyper-parameters, «, 3 and the sampling strategy of the FVAE
in Section V-D.

To answer RQ3, we evaluate the efficiency of FVAE in
Section V-E. We first compare the training speed between
FVAE and Mult-VAE on three real-word datasets. Then we
test the scalability of FVAE on several synthetic datasets. We
finally examine the performance in distributed computing of
the FVAE.

To answer RQ4, we conduct an online A/B testing in a
lookalike system detailed in Section V-F.

B. Results on Million-scale Dataset

1) Reconstruction: Data reconstruction is a fundamental
task for representation learning [60], [61]. It aims at recon-
structing the data with a learned representation and minimiz-
ing the reconstruction error. We evaluate the reconstruction
performance by AUC and mAP. We show the results in Table
II. We can observe that

o Our proposed FVAE outperforms all baseline methods on
both metrics from the perspective of field performance.
This demonstrates that the FVAE is able to reconstruct
feature ranking orders for users with high performance
in chl, ch2, ch3 and tag.

o FVAE obtains slightly lower AUC compared to the Mult-
VAE and RecVAE. This is because the FVAE models
each field with an independent multinomial distribution.

Therefore, the outputs of different fields are measured
by different standards thus cannot be compared directly.
However, field-based metrics are more important than the
overall metric, as field-based application is used more
frequently in real-world systems.

Hundred-scale
- .

< 2
Million-scale % Hundred-scale = Dozen-scale
Candidate = =
ES S
Items @ (@]

Hundred-scale
-

‘ User Profiles

Fig. 3. A typical framework of industrial recommendation systems. The
matching stage aims at finding satisfied items from millions of candidates,
and feeding them to the ranking stage.

2) Tag Prediction: Tag prediction is a crucial task in real
recommender systems and it plays an essential role in the
matching stage [14], [62]. In an industrial setting, the whole
pipeline is usually consisted of several stages (shown in fig.
3), including the matching stage and the ranking stage [13],
[63]. The matching stage consists of several different models
or strategies, where Tag-based matching is one of the most
popular one. It recalls candidates by matching the same or
similar tag observed in the item and user profiles. We employ
FVAE for tag prediction as a downstreaming recommender
system task to evaluate its performance.

Specifically, we use the model to predict the tag for each
user. To this end, we first train FVAE in the training set.
Subsequently, for each held-out user of the test set, we choose
features of Chl, Ch2 and Ch3 as the fold-in set to learn the
important user-level representation and predict each tag. We
pick the observed tags as the positives and randomly select
unobserved tags as the negatives with the same number of
the observed tags. We use AUC and mAP to evaluate the
performance of the prediction, and report the results in Table
III. We can observe that:

¢ Our proposed methods outperform all baseline methods
in both metrics. Specifically, FVAE obtains 3.61% ~
26.83% (average 10.68%) improvement over baseline
methods in AUC and 4.02% ~ 21.63% (average 12.40%)
in mAP. This demonstrates that our model can predict the
probability of tags with better accuracy.

e Compared to FVAE and Mult-VAE, the FVAE signifi-
cantly outperforms Mult-VAE in the task. This is because
that FVAE uses an independent multinomial likelihood
for the data distribution of each field. Therefore, FVAE
can reduce the feature ordering bias between different
fields.

C. Results on Billion-scale Dataset.

1) Tag Prediction: We conduct experiments on the KD
and QB dataset to evaluate the performance of methods with

TABLE II
THE AUC AND MAP OF RECONSTRUCTION TASK ON SHORT CONTENT DATASET. BOLD VALUES INDICATE THE BEST RESULTS.

AUC mAP
Overall Chl Ch2 Ch3 Tag Overall Chl Ch2 Ch3 Tag
PCA 0.8650 0.8761 0.9677 | 0.8711 0.8437 0.5329 0.9548 | 0.8225 | 0.7216 | 0.3498
LDA 0.8860 0.8249 | 0.9532 | 0.8686 | 0.8762 0.4243 0.8658 | 0.6801 | 0.6063 | 0.2568
Ttem2Vec 0.8917 0.8825 | 0.9534 | 0.8766 | 0.8554 0.5343 0.8916 | 0.8033 | 0.7151 0.3699
Mult-DAE 0.8811 0.8755 | 0.8434 | 0.8629 | 0.7789 0.4689 0.8522 | 0.7792 | 0.6628 | 0.3119
Mult-VAE 0.9592 0.9418 | 0.9573 | 09713 | 0.9447 0.5940 0.9582 | 0.7897 | 0.7296 | 0.4035
RecVAE 0.9593 0.9315 | 0.9559 | 0.9629 | 0.9473 0.5846 0.9487 | 0.8297 | 0.7351 | 0.3955
Job2Vec 0.9184 0.8858 | 0.8592 | 0.9023 | 0.8588 0.3784 0.8640 | 0.6063 | 0.6308 | 0.3168
FVAE 0.9583 | 0.9660 | 0.9769 | 0.9832 | 0.9782 | 0.6171 | 0.9736 | 0.8460 | 0.7798 | 0.4439
TABLE III distinguished and similar users are closer to each other than

THE AUC AND MAP OF TAG PREDICTION FOR ALL METHODS.

AUC mAP
PCA 0.7602 0.8731
LDA 0.8541 0.8662
Item2Vec 0.8793 0.8825
Mult-DAE 0.8775 0.8124
Mult-VAE ~ 0.9305 0.9367
RecVAE 0.9210 0.9129
Job2Vec 0.8987 0.8011
FVAE 0.9641 0.9744

billion-scale data. Experimental setting in this subsection is
similar to the Section V-B2. We exclude the results of Mult-
DAE and Mult-VAE in this section as they require consid-
erable amount of training time which cannot be tolerated in
industry. We report the results in Table IV. Observe that:

o For each sampling ratio r, FAVE outperforms all base-
lines in terms of AUC and mAP by a large margin.
This proves that FVAE can keep the effectiveness of
performance on billion-scale datasets.

o We note that although the optimal value of r is different
for various datasets, the gap of performance is subtle. As
our method can be trained much faster, our method is
still the best solution among all approaches.

TABLE IV
THE AUC AND MAP OF TAG PREDICTION ON THE BILLION-SCALE
DATASETS.
KD QB
AUC mAP AUC mAP
PCA 0.7321 | 0.8508 | 0.7017 | 0.7439
LDA 0.8424 | 0.8718 | 0.7901 | 0.8406
Item2Vec 0.8537 | 0.8699 | 0.8569 | 0.8872
FVAE(r=0.01) | 0.9525 | 0.9699 | 0.9435 | 0.9356
FVAE(r=0.05) | 0.9630 | 0.9703 | 0.9441 | 0.9453
FVAE(r=0.1) 0.9632 | 0.9712 | 0.9432 | 0.9452

2) Visualization: We also conduct a case study to verify
the learned embedding of FVAE on KD dataset. We randomly
select 1000 users from 3 topics. Then, we follow a common
experimental setting [58] mapping those vectors into the 2-D
space with t-SNE.

Figure 4 shows the visualization of FVAE embeddings.
Points with the same shape and color belong to the same
topic. We can see that almost all topics can be intuitively

dissimilar ones in the low-dimensional space. This shows
that FVAE can cluster data with different topics with clear
boundaries.

Fig. 4. 2-D visualization of embeddings of users in FVAE. Each point
indicates one user. Different shapes and colors points represent different
topics. FVAE forms most of the points belonging to different topics to different
clusters.

D. Parameter Sensitivity

1) Sampling Strategy: Sampling unique features in epochs
is an efficient way to speed up the training process. We
apply different sampling strategies in our model to evaluate
the performance. We compare the difference between three
sampling distributions [16]:

o Uniform. This strategy ignores the frequency information
in each batch and select features by a Uniform distribu-
tion.

o Frequency. This strategy samples features by their fre-
quency rate of the current batch.

e Zipfian. In a training batch, this strategy first ranks
features by their decreasing frequency of this batch, then
samples features by an approximately Zipfian distribu-
tion.

We report the results in Figure 5. For all compared sampling
strategy, we test sampling ratio r in {0.2,0.4,0.6,0.8}. Note
that the Uniform sampling outperforms other sampling strate-
gies in all sampling ratios, which validates the effectiveness
of the proposed sampling strategy. We also notice that the
performance of the FVAE does not monotonically increase
w.r.t the sampling ratio r. This is because the sampling

strategy with lower r has greater possibilities of filtering long-
tail features in the training process. Similar results can also be
observed in [64].

1.00

1.00

0.95

K
0.96 —
£

AUC

0.90
0.94

Uniform
Zipfian

Uniform
Zipfian

0.85

- Frequency

= Frequency

0.2

0.4 0.6
Sampling Ratio

0.8

0.2

0.4 0.6
Sampling Ratio

0.8

Fig. 5. The effect with different sampling strategies. The uniform strategy
achieve best performance in both AUC and MAP w.r.¢ different sampling rate.

In addition, we plot the AUC score in the validation set
w.r.t. the training time and different sampling ratios in Figure
6. We can see that » = 0.1 achieves the best performance and
speed up the training nearly 4x compared to the r = 0.2.
Using » = 0.01 achieves similar AUC score with r = 0.1,
but the AUC score improves slowly. This means that a proper
r can not only improve the performance but also reduce the
training time.

0.9

)
?(0.7
0.6
0.5
0 50 100 150 200 250
Training Time (s)
Fig. 6. AUC w.r.t training time with different sampling rate r in tag

prediction task. r = 0.1 achieves the best performance and consumes shorter
training time.

2) The Effect of o : Recall that «; is a hyper-parameter
that controls the weight of reconstruction loss in fields, and
i is the field index. The size of « equals the number of
feature fields. We study the sensitivity of «; by fixing the
values of others to 1. The result is shown in Figure 7. It
is observed that different fields exhibit different patterns in
terms of tag prediction performance. Specifically, for acpny
and acp2, the optimal values change from 0.1 to 1. When the
weight become too large, the information expressed by other
fields may be insufficient. a3 and arqg are more insensitive,
this is because those fields only contain the partial information
of other fields. Moreover, the results show that the s maintain
high performance in an extensive range (from 0.001 to 10),
outperforming the traditional Mult-VAE even in the worse
setting. Therefore, a common-used hyper-parameters search
algorithm, i.e., Random search [65], or a simple experienced

setting, i.e., setting all & = 1, could make the FVAE achieve
remarkable performance.

3) The Effect of B : [is another hyper-parameter that
controls the peaking weight of KL annealing. We test different
B values: {0,0.1,0.3,0.5,0.7,0.9, 1}.It could be early tuned
by the early stopping. Results in Figure 8 show that S can
improve the performance of FVAE if a proper value is chosen.
In the SC dataset, the 8 makes FVAE more robust since the
annealing is applied [8]. Overall, we argue that both « and 3
are valuable and easy to tune.

E. Efficiency and Scalability

1) Training Speed: To compare the efficiency of different
methods, we report the training speed of Mult-VAE* and
FVAE on all datasets in Table V. All experiments are con-
ducted in a single machine with an Intel 6133 CPU and 256G
memory. The batch size is set as 512 for these two methods,
and the sampling 7 is set as 0.1. Results in Table V show that
FVAE can substantially improve the throughput especially in
the large-scale datasets.

Specifically, FVAE acquires 56x speedup in million-scale
datasets, 3085x speedup in the KD dataset, and 4020x
speedup in QB dataset. This is because that the number of max
feature size are over million, such that the batched softmax
function and the batched feature sampling strategy in FVAE
can significantly reduce the computation cost of the output
layer.

TABLE V
THROUGHPUT (SAMPLES/SEC) OF MULT-VAE AND FVAE ON THREE
DATASETS.
Dataset ~ Mult-VAE FVAE Improvement
SC 39.88 2257.92 56 %
KD 0.72 2739.85 3085x
QB 0.71 2872.13 4020 %

2) Scalability: To analyze the scalability of FVAE, we
conduct experiments on synthetic data. We generate random
samples with large sparse features by Barabdsi—Albert prefer-
ential attachment model [66]. We fix the average feature size
(to 200) or max feature size (to 10°) in the experiments.
We report the running time in Figure 9. Results show that
the running time of our method grows linearly with respect
to the average feature size. This demonstrates the scalability
of FVAE. In addition, the running time changes very slightly
with respect to the max feature size, which means that this
will not affect the efficiency of FVAE when new features are
continually added.

3) Speedup via Distributed Computing: In order to eval-
uate the performance of the proposed method in distributed
computing, we report the speedup ratio on the KD dataset
w.r.t training servers. All experiments run on the Tencent
Cloud servers. We vary the number of servers from 3 to
12 for distributed computing machines. Figure 10 shows that

“For KD and QB dataset, all features are mapped to a 20bit space by feature
hashing since original billion-scale size is too large for Mult-VAE

1.00

0.98 1

0.96

AUC

0.944

0.92 1
FVAE
—-= Mult-VAE

0.90

1.00

FVAE
—-= Mult-VAE

01 1 10
Qch2

.90 T T ; " ,
0.001 0.1 1 10 100 0.001

QAchl

100

01 1 10 100

QTag

01 1 10 100 0.001

Qch3

0.001

Fig. 7. AUC and mAP w.r.t « in tag prediction on SC. While o shows divergent sensitivities for different fields, it keeps high performance in an extensive

range.
1.00 1.00
0.98 0.98
0 0% o 096
=) <
Lo € 1o
092 092
0.90 0.90

Fig. 8. AUC and mAP w.r.t B in tag prediction task on SC. A simple positive
(3 could improve the performance of the proposed FVAE.

2500 2500

2000 2000

)
[}

£ 1500 1500
=
o
£

g 1000 1000
©
o
=

500 500

0 0

200 400 600 800 1000 1 2 4 8 16

Average feature size Max feature size (x10°)

Fig. 9. Scalability comparison of the FVAE. FVAE scales linearly with the
number of average feature size, and keeps stable w.rz. the max size of features.

the speedup ratios increase almost linearly with the number
of servers, demonstrating that the FVAE can achieve high
efficiency in the distributed environment.

F. Online Application

The look-alike model has been already deployed in recom-
mendation systems to extend audiences with high quality long-

NN W W
o w o wuw

Speedup Ratio

=
ol

=
=}

3 6 9
number of servers

12

Fig. 10. The speedup of FVAE via distributed computing. FVAE scales
linearly with the number of computing resources.

tail contents. Meanwhile, user representation learning plays a
key role in a look-alike system [7]. In order to evaluate the
performance of FVAE in the real application, we conduct an
online A/B testing in QQ Browser Uploader Recommendation
based on a look-alike system. This offers lists of uploaders
to users and attracts those users to follow uploaders that
they are interested in. We first employ a FVAE to learn user
representation, then generate account emebeddings by using
average pooling to merge all followed users. Finally, we recall
similar accounts by the L2 similarity for candidates. Note that
here we employ the skip-gram model [41] as the baseline to
learn user representations. We evaluate the performance of the
models with the number of following clicks and the following
online metrics:

o Like. It is considered as a more important positive
feedback than click [67]. We chose two metrics, # Like

and Avg. Like = #’ to evaluate different models
liked

more comprehensively. The #Like denotes the total
number of Like and #userspreq means the number of
users who like contents at least one time.

o Share. This is another strong feedback to measure the
goodness of exhibited contents. We compared different
models by #Share and Avg. Share= %,

where #Share denotes the total number of Shares and

Husersspareq represents the number of users who share

contents at least one time.

TABLE VI
RELATIVE CHANGES IN METRICS IN ONLINE A/B TEST.

Metric Change

#Following Click +7.92%
#Like 11.31%
Avg. Like +1.16%
#Share +1.90%
Avg. Share +2.12%

We show the results in Table VI. We can see that the
Following Click gains a great improvement, which means that
the proposed FVAE generates a better user representation.
(Avg.) Like and (Avg.) Share also acquire a good increase.
This shows that extended users are truly interested in those
recalled accounts as well.

VI. CONCLUSION

In this paper, we propose a novel model FVAE to learn
users’ representations from large-scale, high-dimensional, and
multi-field user features. We model input data with several
independent multinomial distributions, bijectively mapping to
different fields. This effectively extends Mult-VAE to multi-
field features. We utilize dynamic hash tables, the batched soft-
max, and a feature sampling strategy to improve the efficiency
of FVAE during training. We further evaluate the performance
of our method on several tasks, including reconstruction and
tag prediction and recommender systems. Offline experiments
on 3 large-scale datasets show that our method can learn
user embedding efficiently and effectively. Our FVAE achieves
12.40% relative improvement on AUC score than state-of-the-
art baselines in tag prediction task on a billion-scale dataset.
We also conduct experiments on online lookalike systems.
Results show that the FVAE outperforms baseline methods
in all metrics, demonstrating that the embedding learned by
our method can effectively improve the performance of online
applications.

REFERENCES

[11 H. Yin, X. Zhou, B. Cui, H. Wang, K. Zheng, and Q. V. H. Nguyen,
“Adapting to user interest drift for poi recommendation,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 10, pp. 2566—
2581, 2016.

[2] S.Liand H. Zhao, “A survey on representation learning for user model-
ing,” in Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, 2020, pp. 4997-5003.

[3] L. Gong, X. Feng, D. Ye, H. Li, R. Wu, J. Tao, C. Fan, and P. Cui,
“OptMatch: Optimized matchmaking via modeling the high-order in-
teractions on the arena,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020, pp. 2300-2310.

[4] D. Kang, A. Balakrishnan, P. Shah, P. Crook, Y.-L. Boureau, and
J. Weston, “Recommendation as a communication game: Self-supervised
bot-play for goal-oriented dialogue,” in Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 1951-1961.

[51 H. Gong, Q. Zhao, T. Li, D. Cho, and D. Nguyen, “Learning to profile:

User meta-profile network for few-shot learning,” in Proceedings of

the 29th ACM International Conference on Information & Knowledge

Management, 2020, pp. 2469-2476.

S. deWet and J. Ou, “Finding users who act alike: transfer learning

for expanding advertiser audiences,” in Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2019, pp. 2251-2259.

Y. Liu, K. Ge, X. Zhang, and L. Lin, “Real-time attention based look-

alike model for recommender system,” in Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2019, pp. 2765-2773.

D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, *“Variational

autoencoders for collaborative filtering,” in Proceedings of the 2018

World Wide Web Conference, ser. WWW ’18. Republic and Canton

of Geneva, CHE: International World Wide Web Conferences Steering

Committee, 2018, p. 689-698.

[91 K. Luo, H. Yang, G. Wu, and S. Sanner, “Deep critiquing for vae-
based recommender systems,” in Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2020, pp. 1269-1278.

[10] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, “Field-aware factorization
machines for ctr prediction,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 43-50.

[11] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, “Attentional
factorization machines: learning the weight of feature interactions via
attention networks,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 2017, pp. 3119-3125.

[12] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 1059-1068.

[13] C. Li, Z. Liu, M. Wu, Y. Xu, H. Zhao, P. Huang, G. Kang, Q. Chen,
W. Li, and D. L. Lee, “Multi-interest network with dynamic routing for
recommendation at tmall,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp.
2615-2623.

[14] E. Quintanilla, Y. Rawat, A. Sakryukin, M. Shah, and M. Kankan-

halli, “Adversarial learning for personalized tag recommendation,” I[EEE

Transactions on Multimedia, vol. 23, pp. 1083-1094, 2021.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,

“Feature hashing for large scale multitask learning,” in Proceedings of

the 26th annual international conference on machine learning, 2009,

pp. 1113-1120.

[16] W. Li, “Random texts exhibit zipf’s-law-like word frequency distribu-
tion,” IEEE Transactions on information theory, vol. 38, no. 6, pp. 1842—
1845, 1992.

[17] Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text
processing,” in International conference on machine learning. PMLR,
2016, pp. 1727-1736.

[18] Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick, “Improved
variational autoencoders for text modeling using dilated convolutions,”
in International conference on machine learning. PMLR, 2017, pp.
3881-3890.

[19] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in NIPS
Workshop Bayesian Deep Learning, 2016, pp. 1-3.

[20] D. Tang, D. Liang, T. Jebara, and N. Ruozzi, “Correlated variational
auto-encoders,” in International Conference on Machine Learning.
PMLR, 2019, pp. 6135-6144.

[21] A. Sankar, X. Zhang, A. Krishnan, and J. Han, “Inf-VAE: A variational
autoencoder framework to integrate homophily and influence in diffusion
prediction,” in Proceedings of the 13th International Conference on Web
Search and Data Mining, 2020, pp. 510-518.

[22] N. Sachdeva, G. Manco, E. Ritacco, and V. Pudi, “Sequential variational
autoencoders for collaborative filtering,” in Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, 2019,
pp. 600-608.

[6

[7

—

[8

—

[15

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, and S. I. Nikolenko,
“Recvae: A new variational autoencoder for top-n recommendations with
implicit feedback,” in Proceedings of the 13th International Conference
on Web Search and Data Mining, 2020, pp. 528-536.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
International conference on machine learning. PMLR, 2014, pp. 1278—
1286.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations(ICLR), 2014, pp.
1-14.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual
concepts with a constrained variational framework,” in International
Conference on Learning Representations(ICLR), 2017, pp. 1-22.

M. Pavlovski, J. Gligorijevic, I. Stojkovic, S. Agrawal, S. Komirishetty,
D. Gligorijevic, N. Bhamidipati, and Z. Obradovic, “Time-aware user
embeddings as a service,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020, pp. 3194-3202.

Q. Zheng, G. Liu, A. Liu, Z. Li, K. Zheng, L. Zhao, and X. Zhou,
“Implicit relation-aware social recommendation with variational auto-
encoder,” World Wide Web, pp. 1-16, 2021.

X. Yu, X. Zhang, Y. Cao, and M. Xia, “VAEGAN: A collaborative
filtering framework based on adversarial variational autoencoders.” in
IJCAL 2019, pp. 4206-4212.

Z. Xie, C. Liu, Y. Zhang, H. Lu, D. Wang, and Y. Ding, “Adversarial
and contrastive variational autoencoder for sequential recommendation,”
in Proceedings of the Web Conference 2021, 2021, pp. 449—-459.

1. Porteous, A. Asuncion, and M. Welling, “Bayesian matrix factorization
with side information and dirichlet process mixtures,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 24, no. 1, 2010, pp.
563-568.

S. Jing and S. Li, “Contextual collaborative filtering for student response
prediction in mixed-format tests,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 32, no. 1, 2018, pp. 8095-8096.

S. Li and Y. Fu, “Robust representations for response prediction,” in
Robust Representation for Data Analytics. Springer, 2017, pp. 147—
174.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, p. 30-37, Aug. 2009.
A. Mnih and R. R. Salakhutdinov, ‘“Probabilistic matrix factorization,”
in Advances in neural information processing systems, 2008, pp. 1257—
1264.

R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factor-
ization using markov chain monte carlo,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 880-887.

R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. S. Bhowmick, “Scaling
attributed network embedding to massive graphs,” Proceedings of the
VLDB Endowment, vol. 14, no. 1, p. 37-49, Sep. 2020.

H. Liu, J. Han, Y. Fu, J. Zhou, X. Lu, and H. Xiong, “Multi-modal
transportation recommendation with unified route representation learn-
ing,” Proceedings of the VLDB Endowment, vol. 14, no. 3, pp. 342-350,
2020.

W. Zeng, G. Fan, S. Sun, B. Geng, W. Wang, J. Li, and W. Liu,
“Collaborative filtering via heterogeneous neural networks,” Applied Soft
Computing, p. 107516, 2021.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

O. Barkan and N. Koenigstein, “ITEM2VEC: neural item embedding
for collaborative filtering,” in 2016 IEEE 26th International Workshop
on Machine Learning for Signal Processing (MLSP). 1EEE, 2016, pp.
1-6.

O. Barkan, A. Caciularu, O. Katz, and N. Koenigstein, “Attentive
item2vec: Neural attentive user representations,” in ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2020, pp. 3377-3381.

J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee,
“Billion-scale commodity embedding for e-commerce recommendation
in alibaba,” in Proceedings of the 24th ACM SIGKDD International

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Conference on Knowledge Discovery & Data Mining, 2018, pp. 839—
848.

P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 191-198.

P-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” in Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, 2013, pp. 2333-2338.

X. Yi, J. Yang, L. Hong, D. Z. Cheng, L. Heldt, A. Kumthekar,
Z. Zhao, L. Wei, and E. Chi, “Sampling-bias-corrected neural modeling
for large corpus item recommendations,” in Proceedings of the 13th
ACM Conference on Recommender Systems, 2019, pp. 269-277.

G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in International conference on artificial neural networks.
Springer, 2011, pp. 44-51.

Q. Chen, H. Zhao, W. Li, P. Huang, and W. Ou, “Behavior sequence
transformer for e-commerce recommendation in alibaba,” in Proceedings
of the 1st International Workshop on Deep Learning Practice for High-
Dimensional Sparse Data, 2019, pp. 1-4.

F. Yuan, X. He, A. Karatzoglou, and L. Zhang, “Parameter-efficient
transfer from sequential behaviors for user modeling and recommenda-
tion,” in Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR *20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
1469-1478.

F. Yuan, G. Zhang, A. Karatzoglou, J. Jose, B. Kong, and Y. Li, “One
person, one model, one world: Learning continual user representation
without forgetting,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2021, pp. 696-705.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associa-
tion, vol. 112, no. 518, pp. 859-877, 2017.

Q.-T. Truong, A. Salah, and H. W. Lauw, “Bilateral variational au-
toencoder for collaborative filtering,” in Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, 2021, pp.
292-300.

H. Rong, Y. Wang, F. Zhou, J. Zhai, H. Wu, R. Lan, F. Li, H. Zhang,
Y. Yang, Z. Guo, and D. Wang, “Distributed equivalent substitution
training for large-scale recommender systems,” in Proceedings of the
43rd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, ser. SIGIR ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 911-920.

S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using very large
target vocabulary for neural machine translation,” in Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Pro-
cessing, 2015, pp. 1-10.

N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions,” SIAM review, vol. 53, no. 2, pp. 217-288, 2011.
M. Hoftman, F. R. Bach, and D. M. Blei, “Online learning for latent
dirichlet allocation,” in advances in neural information processing
systems. Citeseer, 2010, pp. 856-864.

W. Wang, F. Xia, J. Wu, Z. Gong, H. Tong, and B. D. Davison,
“Scholar2vec: vector representation of scholars for lifetime collaborator
prediction,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 15, no. 3, pp. 1-19, 2021.

A. Bojchevski and S. Giinnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” in International
Conference on Learning Representations(ICLR), 2018, pp. 1-13.

G. Fan, B. Geng, J. Tao, K. Wang, C. Fan, and W. Zeng, “PPPNE: per-
sonalized proximity preserved network embedding,” Neurocomputing,
2021.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 1225-1234.

L. Wu, R. Jin, and A. K. Jain, “Tag completion for image retrieval,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 3, pp. 716-727, 2012.

[63]

[64]

J. Chen, Z. Gong, Y. Li, H. Zhang, H. Yu, J. Zhu, G. Fan, X.-M. Wu, and
K. Wu, “Meta-path based neighbors for behavioral target generalization
in sequential recommendation,” IEEE Transactions on Network Science
and Engineering, 2022.

A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning
approach for cross domain user modeling in recommendation systems,”
in Proceedings of the 24th international conference on world wide
web, ser. WWW 15, Republic and Canton of Geneva, CHE, 2015, p.
278-288.

[65]
[66]

[67]

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.
A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509-512, 1999.

L. Tang, B. Long, B.-C. Chen, and D. Agarwal, “An empirical study on
recommendation with multiple types of feedback,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 283-292.

