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Abstract—Click-through rate (CTR) prediction is a crucial task in recommender systems, which aims to model users’ dynamic
preferences from their historical behaviors. To achieve this goal, most of the previous models adopt sequential neural networks (e.g.,
GRU) to encode the historical interactions into item representations for recommendations. Though these methods can perform well on
recommending highly relevant items to users, we argue that such models are sub-optimal for the long-term user experience due to highly
skewed recommendations: Monotonous items with similar subjects get more exposure because of inadequate interest explorations.
Thus, some items which are not quite relevant to the users’ historical preferences should be considered. To address these limitations,
we propose a Heterogeneous Graph Enhanced Sequential Neural Network, HGESNN, to explore the interests of users beyond their
historical interactions by explicitly modeling item relations with meta-path constructions. We incorporate a transformer-based network
to embed personalized user intents into sequential learning. In the experiments on both public and industrial datasets, HGESNN
significantly outperforms the state-of-the-art solutions. Specifically, HGESNN has been deployed in the main traffic of our Image-
Text feed recommender system, which obtains 6.28%, 6.82%, and 4.77% CTR gains on news, novels, and entertainment contents,
respectively.

Index Terms—Sequential Recommendation, Behavioral Target Generalization, Recommender Systems, CTR Prediction
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1 INTRODUCTION

In recommender systems, the performance of the click-through
rate (CTR) makes great effects on user experience and thus
influences the final revenue of products. The main challenge of
modeling CTR prediction is elaborately modeling users’ prefer-
ences from their historical behaviors.

Recently, various CTR models are proposed for sequential
recommendations with users’ historical behaviors. GRU-BPR [1]
and its variant [2] employ a Gated Recurrent Unit (GRU) [3] to
model behavioral sequences for the session-based recommenda-
tion. Then, Bert4Rec [4] deems that unidirectional architectures
(the above GRU-based methods) restrict the power of hidden
representations, and thus models sequences with a bidirectional
self-attention network trained through Cloze tasks. A similar
idea also has been proposed in BST [5] which incorporates the
Transformer [6] to encode behavior sequences in the learning.

Though these models are prevalent and effective for rec-
ommending highly relevant items to users, we argue that their
sequential learning methods are not sufficient to learn optimal rep-
resentations of user behaviors and inevitably damage the long-term
user experience. The main limitations include: (a) Highly skewed

J. Chen, Y. Li, and K. Wu are with the College of Computer Science and
Software Engineering, Shenzhen University, Shenzhen 518057, China. Email:
{junyangchen, yuanmanli, Wu}@szu.edu.cn
Z. Gong is with State Key Laboratory of Internet of Things for Smart City,
Department of Computer Information Science, University of Macau, Macau.
Email: fstzgg@umac.mo
H. Zhang, H. Yu, J. Zhu, and G. Fan are with the Platform and Content
Group, Tencent Inc., Shenzhen 518057, China. Email: {alexhjzhang, willsyu,
johannzhu, gefan}@tencent.com;
X. Wu is with the Department of Comuting, The Hong Kong Polytechnic
University, xiao-ming.wu@polyu.edu.hk;

recommendations. Items with highly similar attributes have more
chances of exposure, which may make users feel monotonous to
the recommended contents. (b) Inadequate interest explorations.
Systems should be designed to help users to explore their interests,
e.g., by recommending items that are not quite relevant to their
historical interactions but of potential interest to them. An effective
interest exploration strategy will be beneficial for improving the
efficiency of Page View (PV), Unique Visitor (UV), and CTR.
Hence, it is crucial to explore users’ latent interests beyond their
historical behaviors for content recommendations.

However, it is not straightforward to find out the latent in-
terested items of users, particularly in the session-based recom-
mendation where the session click information of each user is
limited. One intuitive way is randomly generating a set of new
items for each user outside his/her behavioral sequence, while
this way could damage user experience since these items may be
completely unrelated with the user. Therefore, for user interest
exploration, it is necessary to take both user historical behaviors
and exploratory item relations into consideration simultaneously.

To address this problem, we propose a heterogeneous graph
enhanced sequential neural network (HGESNN) for personal-
ized interest exploration in CTR prediction. Specifically, in-
spired by the success of Heterogeneous Graph Neural Networks
(HGNN) [7], [8] in automated information propagation, we firstly
model items and their associated relations as the item-item graph
based on the user historical preferences. Then, we capture the
relations between items and tags (each item contains one or more
tags) as the item-tag graph. Last, we can construct the meta-
path [9], a widely used structure to capture the semantics of two
objects connecting by a composite relation, to search out users’
potential interests. As illustrated in Figure 1 (a), the heterogeneous
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Fig. 1: An example of a heterogeneous graph constructed by user
behavior sequences and item-tag relations. (a) Types of nodes. (b) Item
recommendation based on the sequential behavior. (c) Three meta-
paths involving item-tag relations. (d) Meta-path based neighbors of
the item and tag nodes.

graph contains three types of nodes including user, item, and tag.
Figure 1 (b) reveals the task of the sequential recommendation: to
predict whether i4 should be recommended to the user given his
historical sequence i1 → i2 → i3, where t1, t2, t3, and t4 are
the tags associated with the items. Figure 1 (c) shows three meta-
paths that capture different composite relations between items or
tags. One can find meta-path based neighbors of the item and
tag nodes as shown in Figure 1 (d), which helps to predict user
latent interests (e.g., i4) under the assumption that users would
be interested in items with the same tag. In summary, we believe
that using a more sophisticated graph model by introducing item
nodes, tag nodes, and different types of paths can overcome the
limitations of previous CTR prediction algorithms, since it enables
us to encode different types of item relations inside and outside the
historical preferences to explore user latent intentions. The main
contributions of this paper are as follows:

• In this paper, we focus on personalized interest exploration in
session-based CTR prediction tasks, and propose a heteroge-
neous graph enhanced sequential neural network (HGESNN)
to explore the latent interests of users.

• Apart from taking sequential behaviors as interests, in the
training process, we consider different types of item relations
for behavioral target generalization. HGESNN can exploit
the meta-path based neighbors of items to improve the
recommendation results.

• Extensive experiments on both public and industrial datasets
demonstrate that HGESNN outperforms the state-of-the-
art models, including RNN-based models and Transformer-
based models, validating the effectiveness of our method.
Notably, online experiments on our Image-Text feed recom-
mendation show that HGESNN can obtain 6.28%, 6.82%,
and 4.77% improvements of CTR predictions in news, nov-
els, and entertainment contents, respectively. The proposed
method has been tested and officially deployed in our main
traffic.

The rest of this paper is organized as follows. In Section 2, we
introduce our proposed HGESNN model. We discuss experimental
results in Section 3 and present the related works in Section 4.
Section 5 concludes our work.

2 PROPOSED MODEL

2.1 Problem Statement
In sequential recommendations, given the historical behavior of
user u, without loss of generality, we aim to predict the item that u
will click at the next time step. Moreover, we perform personalized
user interest exploration on the fly.

2.2 Model Overview
Figure 2 gives an overview of our proposed HGESNN model
for personalized interest exploration. HGESNN mainly consists
of three parts: heterogeneous graph representation (Section 2.4),
behavioral target generalization (Section 2.6), and node sequential
training (Section 2.7). In the followings, we first elaborate on
how we construct the item graph from user historical behav-
iors (Section 2.3), and then present the representation learning
method and behavioral target generalization with meta-path based
neighbors. Afterwards, we introduce Transformer layer [6] for
sequential training. Compared with the left-to-right unidirectional
architectures in RNN based models [1], the Transformer employs
a bidirectional attention mechanism on modeling sequences [10]
and show its success in learning more powerful representations in
recommendation tasks [4].

2.3 Construction of Behavioral Item Graph
In this part, we introduce the construction of the behavioral item
graph from user historical sequences. In practice, it is difficult
to utilize all historical information of users in the training. One of
the common ways is to truncate the user behaviors within a certain
time window (e.g., one hour) as session-based sequences as shown
in Figure 2 (a). Then, two items are connected by an undirected
edge if they occur consecutively in the sequences. For example,
as shown in Figure 2 (b), item D and item A are connected
since user u1 clicks them consecutively. As such, we can capture
the global transitive dependencies among items across all user
sequences which carry rich semantic information for behavioral
target generations. Besides, since each item is associated with
multiple tags as shown in Figure 2 (c), we can search out its
meta-path based neighbors for behavioral target generalization.
Here item C is the meta-path neighbor of item B generating by
Item-Tag-Item. After that, we conduct user interest exploration
by regarding item C as the latent target prediction as shown in
Figure 2 (d). More details of the heterogeneous graph embedding
learning will be introduced in the following sections.

2.4 Unified Heterogeneous Graph Representations
Based on user historical preferences, we can model items and
their co-occurrences as the item-item graph. Besides, since each
item contains one or more tags, we can extract the relations
between items and tags as the item-tag graph. However, it is not
straightforward to fuse two different types of relations. To address
this challenge, we propose message propagation step and message
aggregation step to fuse two types of nodes and relations in the
representation learning.

2.4.1 Message Propagation Step.
There are two types of nodes in the graphs, i.e., items and tags.
For each item, the message propagation is performed between a
centered node (e.g., iA in Figure 2 (c)) and its neighbors including
direct neighbors (iD and iB) and meta-path based neighbors
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Fig. 2: Overview of our proposed HGESNN model: (a) Users’ behavior sequences; (b) Behavioral item graph construction; (c) An example
of items F and C generated by the meta-path Item-Tag-Item; (d) Heterogeneous graph embedding learning with the Transformer layer for
behavioral target generalization.

(iF ). As linear transform has been proven to be effective at
encoding features from local structured neighbors [11], we define
the message from node vj to vi with a transformation as follows:

mvi←vj = Mvhvj
= fm(evjvi

,hvj
) · hvj

, (1)

where mvi←vj is the message from node vj to vi with a dimen-
sion d, Mv ∈ Rd×d is the transformation matrix, evjvi denotes
the relation types with one-hot encoded (e.g., direct neighbors
{0, 1} or meta-path generated neighbors {1, 0}), fm(·) takes
as inputs both the relation type evjvi and the representation of
neighboring node hvj

∈ Rd and outputs the transformation matrix
Mv . We concatenate evjvi

and hvj
, then use a Multi-Layer

Perception (MLP) to learn the mapping. The detail of fm(·) is
defined as follows:

fm(evjvi ,hvj ) = MLP(evjvi ⊕ hvj ), (2)

where ⊕ represents the concatenation operation.

2.4.2 Message Aggregation Step.

After receiving messages propagated from the centered node’s
neighbors, we can aggregate them with different aggregators.
In the following, we introduce Mean and Attention aggregators,
respectively.

Mean Aggregator. We average the node’s neighbor information
as follows:

hvi
= σ

(
W · CONCAT(hvi

,
1

|Nvi |
∑

vj∈Nvi

mvi←vj )

)
, (3)

where Nvi is the set of neighbors of node vi, W ∈ Rd×d is
a shared weight matrix, and σ is an activation function, e.g.,
ReLU [12]. The mean aggregator is nearly equivalent to the
convolutional propagation rule used in GCN framework [13] by
averaging the neighbor influences of centered nodes.

Attention Aggregator. For each node, we leverage the at-
tention [6] mechanism to learn the importance weights of its
neighbors. Given a node pair (vi, vj), the weight coefficient αvi,vj

can be defined as follows:

αvi,vj =

exp
(
σ(aT · [Whvi ||Wmvi←vj ])

)
∑

vk∈Nvi
exp
(
σ(aT · [Whvi ||Wmvi←vk ])

) , (4)

where W ∈ Rd×d is a shared weight matrix, and a ∈ R2d denotes
a weight vector. Then, the representation of node vi is obtained
by aggregating the messages passing from its neighbors with the
weight coefficients as follows:

hvi
= σ

( ∑
vj∈Nvi

αvi,vjWmvi←vj

)
. (5)

Similar to [6], we can adopt multi-head attention to stabilize
the learning process of self-attention. Specifically, we repeat the
aggregation of Eq. (5) K times and concatenate the embeddings
as follows:

hvi
=

K∥∥∥∥
k=1

σ

( ∑
vj∈Nvi

αk
vi,vj

W kmvi←vj

)
. (6)

Up to now, we have introduced how we can aggregate the
representations of nodes as shown in Figure 2 (d). Before feeding
them into the Transformer layer, we need to consider the order of
the input sequences.

2.5 Time-Diff Embedding Layer

To exploit the sequential information of the inputs, we need
to inject positional embeddings into the graph representations.
However, some drawbacks exists in the previous methods. The
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original positional embedding in [6] utilizes fixed sinusoid embed-
dings which restricts the expression of representations. After that,
Bert4rec [4] introduces learnable embeddings for achieving better
performance. Nevertheless, this method imposes a restriction on
the maximum length of sequences and need to truncate the
overlength ones. Hence, in this work, we make a compromise
by scaling the time differences between items into (0, N), where
N is set to 150 in the experiments. Then, we propose to use
a time-diff embedding matrix P ∈ RN×d to encode the input
representations. Specifically, given hvi

, we make the following
summation:

hvi
= hvi

+ pi, (7)

where pi ∈ P is the d-dimensional time-diff embedding with
index i calculated by the time difference between node vi−1 and
vi. Especially, for the first node in the sequences, its pi is set to
p0.

2.6 Behavioral Target Generalization
As mentioned in the introduction section, different from the
existing CTR models, one of our main tasks is to explore the
interests of users beyond their historical interactions to make
recommendations. To achieve this task, we firstly propose to
construct a heterogeneous graph to encode the item and tag
relations inside and outside the user historical preferences. Then,
we adopt a common assumption that users might be interested in
items under the same tag. Base on this assumption, for each target
prediction in the training process, we additionally generalize a
potential target which is not present in the original sequences for
auxiliary training. For example, in Figure 2 (d), item C is not
clicked by u1, but it has the same tag with item B, i.e., B and C
are latent neighbors based on the meta-path Item-Tag-Item. Thus,
when using the sequence iD → iA to predict iB , we also use it to
predict iC . We call this process behavioral target generalization.

Note that there are two main differences compared with the
graph session-based [14] and heterogeneous graph-based [15]
methods: The first one is we perform message propagation and
aggregation steps to fuse the heterogeneous information of a target
item and its neighbors for obtaining node representations. Then,
we exploit the meta-path based neighbors of items to perform
personalized user interest exploration (the Q&A 1 in Section 3.5
has demonstrated the effectiveness of behavioral target generaliza-
tion). The second one is we adopt a bidirectional attention mech-
anism to train the obtained node representations. Compared with
the unidirectional training model (e.g, SR-GNN [14], our method
can learn more powerful representations in recommendation tasks
(we report the comparison in the Q&A 3 of Section 3.5 ).

2.7 Transformer Layer
As illustrated in Figure 2 (d), we feed the hidden representations
of items into the Transformer Layer [6]. In general, the Trans-
former layer contains two important components, Multi-Head Self-
Attention and Position-Wise Feed Forward, which are described as
follows.

2.7.1 Multi-Head Self-Attention.
Given an input sequence with length nu, and the hidden repre-
sentation hlvi

∈ Rd of item i at layer l, we can obtain a matrix
H l ∈ Rnu×d to denote this sequence, where hlvi

∈ H l. Then
we employ multi-head self-attention by projecting H l into n

subspaces, which allows the model to jointly attend to information
from different representation subspaces at different positions in the
sequence. The formulation is shown as follows:

Multi-Head(H l) = Concat(head1, ..., headn)WO,

where headi = Attention(H lWQ
i ,H

lWK
i ,H lW V

i ),
(8)

where WQ
i ∈ Rd×d/n, WK

i ∈ Rd×d/n, W V
i ∈ Rd×d/n, and

WO
i ∈ Rd×d are learnable projection matrices. Moreover, the

Attention function in Eq. (8) is defined as follows:

Attention(Q,K, V ) = softmax(
QKT√
d/n

)V, (9)

where Q,K, V represent H lWQ
i , H lWK

i , and H lW V
i , re-

spectively. Besides,
√
d/n is a temperature used for scaling to

avoid extremely small gradients [6].

2.7.2 Position-Wise Feed Forward.

To endow the model with nonlinearity expression and interactions
among dimensions, a position-wise feed-forward network (FFN)
layer [6] is adopted to the outputs of the above multi-head self-
attention. The FFN layer consists of two linear transformations
with a ReLU activation in between as follows:

FNN(x) = max(0,ReLU(xW1 + b1))W2 + b2, (10)

where W1 ∈ Rd×4d, W2 ∈ R4d×d, b1 ∈ R4d, and b2 ∈ Rd are
learnable parameters.

2.8 Optimization Objective

Our goal is to predict the likelihood of a user u clicking a next item
i given his/her previous clicks. To this end, we feed a sequence
of the previous clicks before item i into the Transformer, and take
the last output hu as the representation of the sequence, as shown
in Figure. 2(d). In addition, we want to utilize statistical attributes
from user long-term historical sequences, e.g., the tags of the top-
k items that a user clicked within 30 days. We feed the statistical
features Au of user u into a MLP to obtain the representation
h̃u. Then, we concatenate the embeddings of hu and h̃u and use
another MLP to get the prediction score:

ŷu,i = σ(MLP(hu ⊕ h̃u)), (11)

where σ is an activation function, ⊕ denotes concatenation, and
ŷu,i is the prediction score of user u clicking item i next given
previous clicks. Finally, we optimize our model with a widely used
Bayesian personalized ranking (BPR) loss [16]. BPR is a pairwise
loss that pushes the model to rank positive samples higher than
negative samples. Given a historical interaction sequence of user
u, at any point of the sequence, the BPR loss is defined as:

L =
∑

(u,i,j)∈T

logσ(ŷu,i − ŷu,j), (12)

where T denotes a training batch, ŷu,i is the prediction score of
a positive sample (item i clicked by user u given previous clicks),
and ŷu,j is the score of a negative sample (e.g., an item from other
sequences in the training batch).
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TABLE 1: The statistics of datasets.

Dataset 1st-day 3st-day 5st-day
Total sequences 235,086 241,368 240,140

Training clicks 1,913,269 1,978,580 1,979,876

Testing clicks 2,391,586 2,473,225 2,474,845

Training sequences 105,789 108,616 108,063

Validation sequences 11,754 12,068 12,007

Testing sequences 117,543 120,684 120,070

Item size 236,976 246,252 252,169

Tag size 37,575 38,634 38,970

New items in test set 56,363 58,482 59,685

New tags in test set 5,433 5,480 5,452

Density 8.59e-5 8.32e-5 8.17e-5

3 EXPERIMENTS

3.1 Datasets

We collect real-world large-scale datasets of web feed from QQ
browser homepage1 including news, novels, and entertainment
contents. Specifically, we extract 3-day data with an interval of
one day so as to estimate the service of the trained model on
the next day. For each day, we collect 8-hour user behaviors
that cover the peak of user access. After removing those user
behavioral interactions with less than 5 items, we can obtain about
0.71 million historical sequences in total, consisting of around 13
million clicks with 0.73 million unique items and 0.11 million
unique tags. More details of the statistics are shown in Table 1.
We separate the total sequences into training sequences, validation
sequences, and testing sequences with ratio 4:1:5. In general,
our datasets have the following unique characteristics. First, the
datasets are large enough, containing millions of historical clicks
in both training and testing sets. Second, our datasets contain up to
one-quarter of new items in the test set. Third, the density (average
number of items in each sequence) / (the size of unique item set)
of the datasets is extremely sparse. These characteristics of data
bring great challenges to our model.

3.2 Comparison Methods

To verify the effectiveness of our proposed method, we employ
several state-of-the-art approaches as the baselines:
• GRU4Rec [2]: It adopts one Gated Recurrent Unit (GRU)

layer with ranking based loss for session-based recommen-
dations.

• Two-layer GRU Network: Similar to [2], we use a two-layer
GRU network to model user sequential behaviors.

• Bert4Rec [4]: It uses a deep bidirectional Transformer to
model user behaviors, and achieves state-of-the-art perfor-
mance on sequential recommendations.

• HGESNN-meanAgg: It is our proposed method with a mean
aggregator which averages the node information passing from
centered nodes’ neighbors.

• HGESNN-attAgg: It is another method with an attention
aggregator that leverages an attention mechanism to learn the
importance weights of neighbors.

1. https://www.qq.com/

Note that there are many other fancy session-based recom-
mendation models but we do not consider them here, because
either their performance is inferior to these baselines as shown in
corresponding papers or they are incapable of handling large-scale
datasets that consume too much time on training and inferring
during online serving.

3.3 Detailed Implementation
We implement our method with Tensorflow [17]. For all models,
we uniformity set the embedding size as 32. Before training,
we randomly initialize the model parameters with a Gaussian
distribution, and optimize the models with mini-batch Adam [18].
The learning rate is set to 1e-3, the batch size is 1024, and the
maximum sequence length is set to 50. For Bert4Rec and our
HGESNN, we both set the number of Transformer layer and the
number of attention head as 4. Besides, in HGESNN, we set the
number of sampled neighbors as 5 and 15 for Mean Aggregator
and Attention Aggregator, respectively.

3.4 Evaluation Metrics
As online resources are limited, we cannot perform online experi-
ments for all mentioned methods. Thus, we conduct offline exper-
iments to pick up the best baseline for further online comparison.
The experimental metrics are as follows.

Offline Metrics. In offline experiments, we use Hit Ratio (HR)
and Mean Reciprocal Rank (MRR) to evaluate the performance of
different models. To apply these metrics, we adopt a leave-one-
out evaluation which has been widely used before [19], [20], [21].
Specifically, for each sequence in the test set, we hold out the last
item as the ground truth and treat the item just before the last as the
inputs. Since we only have one ground-truth item for prediction in
each sequence, HR@k is equivalent to Recall@k and proportional
to Precision@k. Besides, MRR is equivalent to Mean Average
Precision (MAP) [4]. Here we report HR with k ∈ {5, 10} and
MRR metrics.

Online Metrics. In online experiments, there are four widely
used indices for evaluation, including Click Page View (CPV),
Exposure Page View (EPV), Click Unique Visitor (CUV), and
Exposure Unique Visitor (EUV). Based on these indices, we
can obtain popular online metrics, Click-Through Rate (CTR),
Per Click Capita Consumption (PCC), and Per Exposure Capita
Consumption (PEC), as follows:

CTR =
CPV

EPV
, PCC =

CPV

CUV
, PEC =

CPV

EUV
. (13)

Exploration Rate (ER). One of our purposes is to explore
users’ interests by behavioral target generalization. Therefore, we
define a metric named Exploration Rate which is represented by
the number of content subjects that a user has not clicked in the
past 30 days. Overall, for all these metrics including offline and
online, the higher values represent the better performance that
models can achieve.

3.5 Experimental Results and Analysis
Offline Evaluation. The performances of the proposed HGESNN
and the baselines are reported in Table 2. Bold numbers denote
the best results and the underlined ones represent the second best.
In general, we can observe that:

(1) Among the results of the baselines, BERT4Rec achieves
the second-best performance in most cases on all the datasets.
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TABLE 2: Results of the next-item prediction on industrial datasets. The highest scores are highlighted in boldface, while the underlined ones
are the second best. Improv. denotes the improvements achieved by our best method over the strongest baselines, where ∗ represents the results
are statistically significant with p-value < 0.05.

Method
1st-day 3rd-day 5th-day

HR@10(%) HR@5(%) MRR(%) HR@10(%) HR@5(%) MRR(%) HR@10(%) HR@5(%) MRR(%)
GRU4Rec 0.323 0.154 0.187 0.426 0.218 0.249 0.306 0.159 0.194

Two-layer GRU Network 0.352 0.205 0.211 0.328 0.186 0.213 0.298 0.155 0.189
BERT4Rec 0.436 0.218 0.254 0.436 0.229 0.247 0.352 0.167 0.205

HGESNN-meanAgg 0.467* 0.239 0.260 0.490 0.269 0.282 0.343 0.178 0.206
HGESNN-attAgg 0.464 0.274* 0.282* 0.512* 0.271* 0.288* 0.423* 0.227* 0.237*

Improv. +7.11% +25.69% +11.02% +17.43% +18.34% +15.66% +20.17% +35.93% +15.61%

TABLE 3: Ablation Test of Behavioral Target Generalization.

Method
3rd-day 5th-day

HR@10(%) HR@5(%) MRR(%) HR@10(%) HR@5(%) MRR(%)

HGESNN-meanAgg

w/o BTG

0.449 0.238 0.247 0.335 0.175 0.198

-8.37% -11.52% -12.41% -2.33% -1.69% -3.41%

HGESNN-attAgg

w/o BTG

0.484 0.267 0.282 0.407 0.219 0.226

-5.47% -1.48% -2.08% -3.78% -3.52% -4.64%

Specifically, BERT4Rec improves GRU4Rec by 34.98%, 2.35%,
and 15.03% in terms of HR@10 on the three datasets; and
outperforms Two-layer GRU network by 23.86%, 32.93%, and
18.12%, respectively. This is because both GRU4Rec and Two-
layer GRU network are left-to-right unidirectional models which
predict the next items sequentially, while BERT4Rec is a bidirec-
tional model with the Transformer layer, suggesting that the self-
attention architecture is more powerful to learn influences among
items for sequential recommendation. These improvement results
demonstrate the effectiveness of adopting the Transformer layer in
our model design. Moreover, we notice that GRU4Rec generally
can obtain better performance than Two-layer GRU network, e.g.,
on the datasets of 3rd-day and 5th-day. One possible reason is that
the GRU network may get over-fitting with more layers in training.

(2) The proposed methods, including HGESNN-meanAgg and
HGESNN-attAgg, consistently outperforms the other baselines on
all datasets under various metrics. For example, HGESNN gains
14.90% HR@10, 26.65% HR@5, and 14.10% MRR improve-
ments on average against the strongest baseline. In Table 2, two-
sided significant tests show the improvements are statistically
significant. Moreover, HGESNN-attAgg generally achieves better
performances than HGESNN-meanAgg, which also demonstrates
the validity of the attention mechanism.

Though the above results show the effectiveness of the de-
signed models, some research questions may be raised:

Question 1: Do the gains come from the proposed Behavioral
Target Generalization (BTG)?

Answer 1: We perform an ablation study to verify the effect
of BTG in HGESNN as shown in Table 3. We report the results
on two datasets due to space limitations. The results show that
the performances drop by as much as 12.41% in terms of MRR,
proving that BTG plays a critical role in the sequential recommen-
dation.

Question 2: What is the impact of the number of sampled
neighbors in the proposed method?

Answer 2: We investigate the impact of the number of sampled
neighbors on our methods with the 5th-day dataset. As shown
in Figure 3, we can see that: (1) The performance of HGESNN
benefits from a suitable size of sampled neighbors; (2) A large
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Fig. 3: Impact of the number of sampled neighbors.

size may involve noisy neighbors and degrade the performance
of HGESNN-meanAgg; (3) In contrast, HGESNN-attAgg is more
robust to the number of sampled neighbors. One possible reason
is that the attention mechanism can automatically learn the impor-
tance weights of neighbors to restrict the noisy neighbors.

Question 3: Would HGESNN perform well comparing with
the baselines on public datasets?

Answer 3: As shown in Table 4, we conduct experiments on
Movielens [22], a popular benchmark dataset for evaluating rec-
ommendation algorithms. Note that here we include SR-GNN [14]
modeling session sequences as graph-structured data into the com-
parison of the public dataset. We exclude it in our industry datasets
because its construction of session graphs takes huge memory
consumption. The highest scores are highlighted in boldface. Our
methods can achieve around 10% to 28% improvement on the
second-best scores (the underlined ones).

Question 4: How does HEGSNN handle the online serving
and perform for online A/B testing?

Answer 4: Online A/B testing was conducted in our web
browser from August 13 to 26. During the online serving, we
update our model from scratch every one hour using the past
8-hour user behavior data. We truncate the number of nodes’
neighbors to 100 with an importance sampling strategy, and save
the adjacent matrices of graphs into tensors. Besides, when en-
countering unknown items, we uniformly assign them a randomly
generated embedding for simplicity. As shown in Table 5, we
select the BERT4Rec model as the base model since it is already
used in our real system, and we adopt HGESNN-attAgg for
comparison because it achieves the best performance in our offline
experiments. We observe that our method achieves performance
improvements in all metrics. For example, we gain improvements
of 6.28%, 6.82%, and 4.77% in CTR on the Image-Text Feeds of
news, novels, and entertainment contents, respectively. Moreover,
we achieve 2.46% ER improvements, which indicates that more
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new contents that users are interested in can be exposed to
exploring user interests.

Question 5: What are the main differences between HGESNN
and BERT4Rec?

Answer 5: In general, there are two main differences for
our method compared with BERT4Rec. On the one hand, we
perform message propagation and aggregation steps to fuse the
heterogeneous information of a target item and its neighbors
for obtaining node representations before feeding into sequential
training. On the other hand, we exploit the meta-path based neigh-
bors of items to perform personalized user interest exploration (the
Q&A 1 has demonstrated the effectiveness of behavioral target
generalization).

Question 6: What is the effect of other meta-path selection for
behavioral target generalization?

Answer 6: In our method, we use the Item-Tag-Item meta-path
to generate the neighbors of target items as user latent interests for
training. We have tried using more meta-paths for this purpose,
e.g., i-t-t-i and i-t-i-t-i (i denotes item and t is tag), but the
model performance degrades after adding these meta-paths one
by one. We conjecture that the generated targets may become too
generalized as the length of the meta-path increases. Thus, there
is a trade-off between target generalization and target prediction
accuracy.

Question 7: Give an example to illustrate why HGESNN
performs better on highly skewed data than sequential recommen-
dation models.

Answer 7: In our Short-Video feed recommendation, we may
recommend a short video about “Naruto” to users. This video
contains multiple tags, including Ninjutsu, ninja, and Ramen.
Without our method, the system may continually recommend
animation about action scenes. The proposed method is capable
of mining the relation between “Ramen” and “Food Program”,
and thus may benefit the long-term user experience.

Question 8: Can the proposed method be extended to other
sequential neural models?

Answer 8: We extend our method to DIEN [23], a GRU-based
sequential neural network, used in our real system for Short-Video
feed recommendation. We conduct online A/B testing from Jul. 19
to 27. Experiments show that our method obtains 12.92%, 5.88%,
and 35.09% gains on CTR, PCC, and PEC, respectively. And the
performance of ER increases by 21.87%. These improved results
verify the effectiveness and expansibility of our method.

4 RELATED WORK

This work draws on two research areas: (1) sequential recommen-
dation and (2) graph neural networks.

Sequential Recommendation. Early work on recommenda-
tion systems usually employs Collaborative Filtering to model
users’ behavioral sequences [24], [25]. While these methods
usually ignore the order information of the sequences, they are
not suitable for sequential recommendations. Recently, Recurrent
Neural Network (RNN) [26] and its variants, GRU [27] and
LSTM [28], are becoming prevalent for modeling user behav-
iors [29]. For example, NARM [30] incorporates an attention
mechanism into RNN for capturing both users’ preferences and
their main purposes in sessions. GRU4Rec [2] incorporates GRU
with designed loss functions that are tailored to sequential rec-
ommendations. The main idea of these methods is to encode
users’ behaviors into embeddings which reflect their preferences

TABLE 4: Results on public datasets – MovieLens (ML-20m).

Method
ML-20m

HR@10(%) HR@5(%) MRR(%)
GRU4Rec 4.613 2.131 2.025

Two layer GRU Attention 4.197 2.165 2.174
SG-GNN 4.302 2.158 2.121

HGESNN-meanAgg 4.821 2.334 2.257
BERT4Rec 4.517 2.171 2.135

HGESNN-meanAgg 4.821 2.334 2.257
HGESNN-attAgg 5.107 2.793 2.484

Improv. +10.71% +28.65% +14.26%

TABLE 5: Results from Online A/B testing.

Image-Text Feeds CTR Gain PCC Gain PEC Gain ER Gain
News +6.28% +4.16% +17.66%

+2.46%Novels +6.82% +9.55% +5.62%
Entertainment Contents +4.77% +1.62% +12.65%

for making predictions. Nevertheless, these recurrent networks
constrain the expression ability to model mutual influences be-
tween items in a session. Thus, inspired by the Transformer
architecture [6], SASRec [20] and BERT4Rec [4] propose to use
it to learn the mutual influence scores of items in a sequence.
Among them, BERT4Rec is most related to our work. However,
our model can explore the interests of users beyond their historical
interactions by target behavioral generalization with meta-path
constructions.

Graph Neural Networks. Many research efforts have demon-
strated the power of Graph Neural Networks (GNNs) [31] to
model graph-structured data. For example, the variants of GNNs
including GCN [32], GAT [33] and GraphSAGE [13] show
ground-breaking performance on node representation learning.
Recently, GNNs are widely applied for recommendations. For
example, PinSage [34] incorporates GraphSAGE and achieves
the largest application of deep graph embeddings, which paves
the way for a new generation of web-scale recommender sys-
tems. MEIRec [8] exploits a metapath-guided GNN [7] to model
complex objects and rich interactions of heterogeneous graph for
search intent recommendation. However, all these methods are
not designed for sequential recommendations since they ignore
the orders in users’ behaviors. Then, SR-GNN [14] proposes to
model session sequences as graph-structured data and obtain more
accurate item embedding by taking complex transitions of items
into consideration. Fi-GNN [35] presents the multi-field features
of advertising systems in a graph structure and incorporates a
gated GNN [36] to learn sequential feature interactions. Hyper-
Rec [37] employs a hypergraph structure to represent the short-
term correlations of items and adopts convolutional layers to learn
the embedding. MA-GNN [38] applies a GNN method to model
the short-term item correlations and uses a memory network to
model the long-term item dependency. Nevertheless, all of these
methods are left-to-right unidirectional models that cannot learn
the mutual influences of items in a sequential list. Moreover, these
approaches fail to consider behavioral target generalization in CTR
predictions.

Authorized licensed use limited to: Tencent. Downloaded on February 09,2022 at 07:39:54 UTC from IEEE Xplore.  Restrictions apply. 



2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3149328, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

5 CONCLUSION

In general, we propose a GNN-based model, HGESNN, to explore
the latent interests of users beyond their historical behaviors for
sequential recommendations. HGESNN explicitly models item
relations of all behavioral sequences with meta-path constructions,
and utilizes meta-path guided neighbors to perform behavioral
target generalization. Before sequential training, we introduce the
message propagation and aggregation steps to fuse the heteroge-
neous information of a target item and its neighbors for obtaining
node representations. Then, we employ the Transformer layer, a
deep bidirectional sequential model, to predict next items. In this
way, our method can exploit the meta-path based neighbors of
items to perform personalized user interest exploration. Extensive
results on offline and online experiments demonstrate the effec-
tiveness and expansibility of our method.
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