
QuickSkill: Novice Skill Estimation in Online Multiplayer Games
Chaoyun Zhang∗

Tencent
Shenzhen, China

hidan.zhang@gmail.com

Kai Wang∗
Tencent

Shenzhen, China
wangjinjie722@gmail.com

Hao Chen
Tencent

Shenzhen, China
fitzhchen@tencent.com

Ge Fan
Tencent

Shenzhen, China
gefan@tencent.com

Yingjie Li
Tencent

Shenzhen, China
wallaceyjli@tencent.com

Lifang Wu
Tencent

Shenzhen, China
danniewu@tencent.com

Bingchao Zheng
Tencent

Shenzhen, China
novazheng@tencent.com

ABSTRACT
Matchmaking systems are vital for creating fair matches in online
multiplayer games, which directly affects players’ satisfactions and
game experience. Most of the matchmaking systems largely rely
on precise estimation of players’ game skills to construct equitable
games. However, the skill rating of a novice is usually inaccurate,
as current matchmaking rating algorithms require considerable
amount of games for learning the true skill of a new player. Using
these unreliable skill scores at early stages for matchmaking usually
leads to disparities in terms of team performance, which causes
negative game experience. This is known as the “cold-start” problem
for matchmaking rating algorithms.

To overcome this conundrum, this paper proposesQuickSkill,
a deep learning based novice skill estimation framework to quickly
probe abilities of new players in online multiplayer games. Quick-
Skill extracts sequential performance features from initial few
games of a player to predict his/her future skill rating with a dedi-
cated neural network, thus delivering accurate skill estimation at
the player’s early game stage. By employingQuickSkill for match-
making, game fairness can be dramatically improved in the initial
cold-start period. We conduct experiments in a popular mobile mul-
tiplayer game in both offline and online scenarios. Results obtained
with two real-world anonymized gaming datasets demonstrate that
proposed QuickSkill delivers precise estimation of game skills for
novices, leading to significantly lower team skill disparities and
better player game experience. To the best of our knowledge, pro-
posed QuickSkill is the first framework that tackles the cold-start
problem for traditional skill rating algorithms.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Neural networks.

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557070

KEYWORDS
Game Skill Estimation, Online Multiplayer Game, Game Matchmak-
ing, Deep Learning

ACM Reference Format:
Chaoyun Zhang, Kai Wang, Hao Chen, Ge Fan, Yingjie Li, Lifang Wu,
and Bingchao Zheng. 2022. QuickSkill: Novice Skill Estimation in Online
Multiplayer Games. In Proceedings of the 31st ACM International Conference

on Information and Knowledge Management (CIKM ’22), October 17–21, 2022,

Atlanta, GA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3511808.3557070

1 INTRODUCTION
Game matchmaking systems aim at searching comparable team-
mates and opponents for players to form a fair match, such that all
teams in a game have similar abilities. They are massively employed
in online multiplayer games [1–3], such as League of Legends. A
good matchmaking system avoids disparities as far as possible,
since weak teams and players will sense tremendous frustration if
they are overwhelmed in a game [2]. The quality of matchmaking
therefore directly affects players’ satisfaction and retention [4], and
the life cycle of the game [5].

A matchmaking service makes a decision depending on many
criteria, whereas the principal factor is the players’ skills scores
(a.k.a matchmaking rates). The matchmaking rate (MMR) quantifies
players’ game abilities by aggregating their historical competition
outcomes or/and performance features into a scalar [6], which is
used to compare and rank players’ strength at the same game event
[7]. The most classical and popular MMR algorithms employed in
online games is the TrueSkill-family [8]. These methods update a
player’s MMR after each match given the outcome of the game [8].
In general, the accuracy of the MMR grows with the number of
games used for learning.

However, industrial applications of TrueSkill suggest that it bears
significant shortcomings when assessing skills of novices, especially
for online multiplayer games. A new player joins the game with
enormous skill uncertainty and limited information, while their
game strengths diversify. New players are not always poor players
– they may have experience of other similar games. This makes
ratings in initial games unreliable, until it observes outcomes of
sufficient matches. In addition, TrueSkill suffers from unstabitily
at the early stage and slow convergence, known as the “cold-start”
problem [9][10][11]. This dramatically affects the accuracy of the
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Figure 1: An example of TrueSkill MMRs evolution of two
players generated in an online multiplayer game.

skill rating, which indirectly leads to overwhelming games † and
negative game experience. Fig. 1 shows an example of TrueSkill
MMRs evolution of two players who have different strengths in
an online multiplayer game. Observe that although their MMRs
disperse after 40 games, two curves interweave in the cold-start pe-
riod. This indicates that the two players with huge ability difference
may be matched in a game, which causes significant unfairness.

Estimating the game skill for a new player is not straightforward.
First, the strength of a player is summarized via various game
performance features. As TrueSkill-based algorithms build upon
Bayesian graphical models, working with a large features space will
lead to a huge probabilistic graph model. This makes the inference
problem mathematically intractable. Therefore, these models are
usually oversimplified, which fail to reflect the player’s ability in
diverse perspectives [12]. In addition, a player’s skill is less relevant
to the side information of the player, such as registration data.
Skills in dissimilar games also bring little of help for inferring the
player’s skill in the targeted domain, as these games may have
completely different contexts. As such, legacy methods that tackle
the user cold-start for recommender systems (e.g., [13–15]), are not
applicable to the skill estimation. This further complicates the cold-
start problem in game skill rating context, making it a “Achilles’
Heel” for traditional models.

Though traditional MMR algorithms are unreliable in the initial
games, their accuracy grows with the number of matches for learn-
ing, and converges after certain games. We observe that converged
MMRs estimated by TrueSkill-based models after the cold-start
period can better reflect the real game abilities of players at their
novice phases (see Sec. 4.4). This makes future converged MMRs
appropriate labels, which can be learned and correlated with the
players’ performance in early games using machine learning.

Contributions. To exploit the future converged MMRs and rem-
edy the cold-start issue, this paper introducesQuickSkill, a fast and
accurate deep learning based skill estimation framework tailored to
new players for online multiplayer games. Unlike TrueSkill and its
variants, which only take binary outcomes of the match or limited
performance features for learning,QuickSkill extracts comprehen-
sive sequential in-game features from each combat match, to profile
the multi-dimension game ability of a player. We design a dedicated
deep learning model MMR-Net, which accepts feature snapshots
collected at different time slices in a game as inputs, and predicts

†Referring to the games where the level of one team is much higher than another one.

the “future” MMR provided by the TrueSkill family of the player.
These look-ahead MMRs are more accurate than their counterparts
in the cold-start period. By substituting original skill ratings with
predicted MMRs, proposed QuickSkill delivers more precise skill
estimation, which significantly improves the fairness of matchmak-
ing. This buffers the infancy stage of TrueSkill, allowing them to
improve during the initial learning period.

We evaluate our proposed framework on anonymized bench-
mark datasets collected in two different game modes in a well-
known online mobile Multiplayer Online Battle Arena (MOBA)
game, for both offline and online scenarios. Experiments show that
compared to TrueSkill and its variants, ourQuickSkill achieves
more accurate estimation of players’ skills for novices in the cold-
start period. By employing the proposed framework for match-
making, over 20% overwhelming games at novice stages can be
eliminated, leading to significantly better game fairness and player
game experience. Importantly, proposedQuickSkill can be effi-
ciently deployed as an online machine learning service with limited
computing resources requirement. To the best of our knowledge,
proposed QuickSkill is the first framework that tackles the cold-start

problem for traditional MMR models.

2 RELATEDWORK
In this section, we review related research and industry practice on
game matchmaking and player skill rating.

2.1 Player Skill Rating
Most game matchmaking systems build upon accurate player skill
rating, which profiles the overall strength of an individual player
with a matchmaking rate (MMR). Classical MMR algorithms are
based on Bayesian probabilistic graphical models. In this case, the
MMR of each new player is initialized with a unified score, and
is gradually updated after each game. Popular MMR algorithms
include ELO [16], ELO-MMR [6], TrueSkill [8], Glicko [17] , and
their variants or extensions (e.g., [18][19]).

The well-known ELO system [16] has been widely employed
to estimate players’ abilities in two-player games, e.g., GO and
chess. The TrueSkill [8] model extends Bayesian rating systems to a
multiplayer manner, which plays an important role in matchmaking
for many different games. These algorithms however, only update
with binary win-loss outcomes of matches, while ignoring the
performance of players and are biased inmany cases. TrueSkill2 [18]
utilizes fine-grained features for the skill estimation, by leveraging
players’ performance and correlating around-game features. This
delivers more accurate estimation and enables faster convergence.

As aforementioned rating systems require considerable amount
of games for learning, the skill estimation for novices are generally
inaccurate [9][10][11]. Research toward estimating beginners’ skills
in online games remains largely unexplored.

2.2 Matchmaking in Online Multiplayer Games
With players’ MMRs provided, the matchmaking system [20] forms
a fair game by finding comparable players for each competitionwith
similar total team MMRs. A sophisticated matchmaking system not
only considers the MMR scalar of each player in the matchmaking
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pool, but also the player profiles and team cooperative effects inher-
ent to multiplayer matches (e.g., [5, 21]). This usually leads to more
equatable games. For instance, Delalleau et al., employ a neural net-
work to predict player enjoyment to achieve better matchmaking
[22]. Similarly, research in [5] completes the matchmaking process
at two stages: it first uses a model to predict the outcome of the
game, then finds the optimal matchmaking by heuristics sorting.
Deng et al., [12] use reinforcement learning to resolve matchmaking
for multiplayer games from the global player pool. This achieves
better game equality compared to traditional two-stage approaches.

In general, MMRs remains the core of most matchmaking sys-
tems [20], affecting directly game experience and retention of play-
ers [23]. This is particularly important for novices, who have limited
number of games to probe their game abilities.

3 QUICKSKILL: A DEDICATED NOVICE SKILL
ESTIMATION FRAMEWORK

In this section, we first give a brief background and formalize the
problem of novice skill estimation. Next, we introduce the over-
all architecture of the QuickSkill framework. Finally, we present
MMR-Nets, the core deep learning predictor of the system, and
explain how to learn the game skill of a player with complex, se-
quential in-game features in a popular mobile MOBA game.

3.1 Background and Problem Formulation
Multiplayer Online Battle Arena (MOBA) Game. MOBA (e.g.,
Defense of the Ancients, Mobile Legends) is one of the most popular
game families in both personal computer (PC) and mobile game
markets. It is considered as a mix of real-time strategy, role-playing
and action games. In the classicalMOBA game setting [24], 5 players
controlling different game characters are matched as a team to play
against another one. Players gain coins and become stronger by
seizing game resources and slaying their enemies. All players in
a team work collaboratively to destroy the opponent’s base as an
ultimate goal. In a MOBA game, skill balance between teams has
substantial impact on the game experience for players.

MMRandGameMatchmaking. Thematchmaking rate (MMR)
is a score that represents the game skill of a player. Higher MMR
means the player are stronger and will generally perform better in
the game. Normally, the score is updated after the each match given
the outcome of the game, as well as the player’s game performance.
We formally denote the MMR of the player 𝑝 at the game 𝑖 as 𝑠𝑝,𝑖 .
This score will be used for matchmaking at the game 𝑖 + 1.

Normally, the MOBA matchmaking system searches two teams
comprising multiple players with similar skill levels to construct
a combat match. The overall matchmaking rules are complicated,
while there are two common criteria should be followed. Namely:

(1) The players’ skills in the same team should be close, i.e.,
|𝑠𝛼
𝑝,𝑖

− 𝑠𝛼
𝑝′,𝑖′ | ≤ 𝜏,∀𝑝, 𝑝

′, and |𝑠𝛽
𝑝,𝑖

− 𝑠𝛽
𝑝′,𝑖′ | ≤ 𝜏,∀𝑝, 𝑝

′. Here 𝛼
and 𝛽 are the team indices, 𝑝, 𝑝 ′ are players in two teams
and 𝜏 denotes the player’s skill gap threshold.

(2) The summation of skills of all players in a team should be
close to another, i.e., |∑𝑝 𝑠𝛼𝑝,𝑖 − ∑

𝑝′ 𝑠
𝛽

𝑝′,𝑖′ | ≤ 𝜑 , where 𝜑 is
the team’s skill gap threshold. Normally, teams with higher

Game 1 Game 2 Game N
Game K
𝑠!,#

Prediction

Prediction

…

Games in the cold-start period

Figure 2: An illustration of the objective of QuickSkill.

skills are supposed to win with higher probabilities, provided
that MMRs are accurate.

Matchmaking algorithms used in this paper follow these two basic
rules, to guarantee the fairness of a game as much as possible.

Key Observation. Classical MMR algorithms, i.e., TrueSkill [8]
and its upgraded variant TrueSkill2 [18] suffer from the cold-start
problem. Their MMRs calculated are relatively inaccurate and unsta-
ble before 𝐶 games. The 𝐶 is the number of games in the cold-start
period and may vary from different MMR algorithms. In this paper,
we set𝐶 = 18 for TrueSkill and TrueSkill2 based on our observation
on online deployment, as both models converge after 18 games.

Notably, with the number of games increasing, their MMRs be-
come more precise and stable. We observe that these future MMRs
naturally become a satisfying indicators that can better reflect the
actual game strength of a player at the novice stage. If we foresee
players’ future MMRs and use them for matchmaking in the cold-
start period, the fairness of the game can be substantially improved.
Therefore, we design QuickSkill to “gaze into the future”, by pre-
dicting players’ future MMR scores given their game performance
at novice stages. The inferred MMRs replace the original TrueSkill
rating and are employed for matchmaking at their novices stages.
We illustrate the principle of QuickSkill in Fig. 2.

Problem Formulation. Predicting the future MMR of a player
requires his/her performance feature snapshots at different time in
novice games. Denoting the targeted MMR label in the look-ahead
game 𝐾 for player 𝑝 as 𝑠𝑝,𝐾 , and the game performance features at
time slice 𝑡 of the game 𝑖 as 𝑋 𝑡

𝑝,𝑖
, we formulate the problem as:

𝑠𝑝,𝑖 = argmax
𝑠𝑝,𝐾

p(𝑠𝑝,𝐾 |𝑋 1
𝑝,𝑖 , · · · , 𝑋

𝑇
𝑝,𝑖 ). (1)

Here, p is the probability distribution, 𝑠𝑝,𝑖 is the predicted future
MMR of at the game 𝑖 for player 𝑝 , andwill be used formatchmaking
before game 𝐶 . Note that game 𝐾 is the future game used for the
MMR ground truth, while game 𝑖 is the current match. We conduct
detailed analysis and experiments of the choice of different future
𝐾 in Sec. 4.4. The base MMR algorithms employed for the label 𝑠𝑝,𝐾
are flexible, where we select TrueSkill and TrueSkill2 in this study.

3.2 QuickSkill in a Nutshell
QuickSkill is a novel deep learning framework that specifically
designed for novice game skill rating. It includes two important
components, namely (i) offline training; and (ii) online serving.

Offline Training. In the offline training process, QuickSkill
collects large amount of game performance data of players at their
novice stages, and labels each sample with the players’ future MMR
𝑠𝑝,𝐾 . In the case of MOBA games, players’ performance is profiled
by their statistics at different stages of a game [24]. To fully capture
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Figure 3: An illustration of the online serving process.

the player’s performance, we collect game feature snapshots every
3 minutes to construct comprehensive profiles of a player. Next, we
train a dedicated transformer-based MMR-Nets with the aforemen-
tioned features by minimizing the mean squared error between the
predicted 𝑠𝑝,𝑖 and the ground truth 𝑠𝑝,𝐾 .

Online Serving. At the stage of online serving,QuickSkill pre-
dicts a MMR 𝑠𝑝,𝑖 after each game 𝑖 in the cold-start period, given the
sequential performance features of the players. The 𝑠𝑝,𝑖 substitutes
the raw TrueSkill MMR and is employed for the matchmaking phase
in the following games 𝑖 + 1. We show the online serving process
in Fig. 3.QuickSkill buffers the infancy stage of TrueSkill based
MMRs models, improving the skill rating at their early learning
stages. Once the algorithm that computes the MMR gains suffi-
cient games for learning and moves out of the cold-start period,
the matchmaking system switches to the original algorithm for the
game matchmaking. This means that QuickSkill retires for the
corresponding player after game 𝐶 .

3.3 Feature Design for Skill Learning
Recall that the objective of a team in aMOBA game play is to destroy
their opponent’s base. This is however, a complicated process and
cannot be accomplished at one stroke. Strength of one player is
quite limited, hence players in a team need to work collaboratively
to achieve the ultimate goal [25]. These factors make the entire
MOBA game play complex.

The skill level of a MOBA player is profiled from different di-
mensions [12]. In this paper, we collect their statistics in a game
from various perspectives to fully capture the player’s performance
and skill. These include (i) personal statistics; (ii) teammate statis-
tics; and (iii) opponent statistics. Personal statistics includes the
player’s own game-related features, e.g., kills, death, gold. These
features reflect the player’s own performance in a specific game. In
addition, performance of teammates and opponents are important
references for comparisons between the targeted player and other
participants in the same game. We therefore add the teammate
and opponent statistics (e.g., average team/opponent kills, average
team/opponent gold) to the feature set, to distinguish the target
with other players. Note that all features collected in this study
do not embrace personal information of players, therefore the data
collected does not raise privacy concerns.

In addition, A MOBA game can be naturally partitioned into
various game phases by different time in a game, where each game
phase reflects the players’ performance in different dimensions
[12]. For example, at the early phase of the game, player’s statistics
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Figure 4: The overall architecture of the proposed MMR-
Nets.

represents his skill at the laning stage, while the importance of
team battles grows with the game time. The result of final team
battle, usually has decisive effects on the game outcome. In order to
comprehensively capture the player’s game strength, performance
at different phases in a game should be leveraged and weighted
for model learning. To this end, we sample the aforementioned
statistics features snapshot every 3 minutes in a game, to deliver
their performance evolution to the MMR-Nets for skill learning,
which is detailed next.

3.4 Learning Game Skills With MMR-Nets
Deep learning has been widely employed to model complex correla-
tions for multivariate time series in different areas (e.g., [26–30]). To
leverage the heterogeneous sequential game features and achieve
accurate skill learning, we design a transformer-based MMR-Net,
to extract important information from different feature channels.
We show the overall structure of the MMR-Net in Fig.4. The pro-
posed MMR-Net includes three important components, namely (i)

embedding layers; (ii) OmniNet layers; and (iii) aggregation lay-
ers. The model is fed with a sequence of feature snapshots i.e.,
{𝑋 1, · · · , 𝑋𝑇 }, where each slice includes 115 features, profiling the
player’s performance from multiple perspectives.

Performance Snapshots Embedding. The discretized inputs
are first processed by an embedding layer, which comprises three
components, namely line-up embedding, game features embedding
and position embedding. The line-up of a MOBA game refers to the
character list controlled by each team. Since different characters
have synergy or suppression effect on each other [5], the line-up
makes significant impact to the player’s performance and the out-
come of the game [5]. We therefore isolate the line-up information
from other features, and encode them with a dedicated embedding
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layer. Game features embedding encodes other sparse performance
features of the player in a game into a dense space. The model also
includes a regular position embedding, to facilitate the sequential
information processing by the transformer structure. Finally, line-
up and game features embedding are concatenated and added with
the position embedding, which constructs the full embedding for
different feature snapshots.

Sequential Learning with OmniNets. Embedded features are
subsequently processed by an OmniNet, which stands for Omnidi-
rectional Representations from Transformers [31].

Vanilla transformers build uponmulti-head self-attention blocks,
which enables to learn contributions of different time slices dynami-
cally. They are widely employed for sequential learning in different
applications [32–34]. In order to take advantage of this property,
we employ the transformer structure as a base to learn the corre-
lation and importance between skills and player’s performance of
different phases in a game automatically.

Compared to traditional Transformers [35], the OmniNet intro-
duces an additional omnidirectional attention as a meta learner,
which connects hidden representations across all layers in themodel
and weights their importance automatically. The operation of the
omnidirectional attention is formulated as:

𝑂𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = Attention(𝐻1
1 , 𝐻

2
1 , · · · , 𝐻

𝐿−1
𝑁 ), (2)

where𝑂𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is the output of the omnidirectional attention, and
𝐻 𝑙
𝑇
denotes the hidden layer of the model in layer 𝑙 at time state 𝑇 .

As the omnidirectional attention operates over all hidden layers
of the transformer, the 𝑂𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 returns a tensor with (𝐿 − 1) ×
𝑇 × 𝑑 dimensions. 𝑂𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is added with the output of the final
layer of the transformer, after dimension reduced by a Multiplayer
Perception (MLP), i.e.,

OmniNet(𝑋 ) = Transformer(𝑋 )𝐿−1 +𝑀𝐿𝑃 (𝑂𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛), (3)

where Transformer(𝑋 )𝐿−1 is the output of the transformer. The
global attention in the OmniNet enables to access the knowledge
of the entire network, which helps capture patterns across differ-
ent features interweaving over different time in a game. This is
particularly suitable for the skill learning, as the performance fea-
tures are inter-correlated across different game phases. Reinforcing
such correlations improves the model representability and helps
the OmniNet better capture the complex link between performance
and game skill. Moreover, the global attention can be regarded as a
form of residual learning [36], which is beneficial for the gradient
propagation and can be learnt in an end-to-end manner.

Features Aggregation & Prediction. Finally, outputs from the
OmniNet are passed to a dense aggregation layer, to combine the
high-level features embedding and make the skill prediction 𝑠𝑝,𝑖 .
The aggregation layer gathers outputs from all time states, to maxi-
mize the sequential information utility. This enables to summarize
the player’s performance from a global picture of a game. The
entire model is trained by minimising a standard 𝐿2 loss between
inferred skills and ground truth future MMR, i.e.,

𝐿(Θ) = 1
N

∑︁
N

(𝑠𝑝,𝐾 − 𝑠𝑝,𝑖 )2, (4)

where Θ denote the trainable parameters of the MMR-Net, and N
is the number of samples used for training.

Online Deployment. Our MMR-Nets are efficient in both of-
fline and online processes. Training the MMR-Net with million-
scale data on average requires around 6 hours in a single machine
with 8 NVIDIA V100 GPUs. Once trained, the model only needs to
be updated every few weeks to meet the online data drift. In the
online serving, we deploy 10 containers (4 cores, 2G memory) for
feature pre-processing and 15 containers (4 cores, 2G memory) for
TF-serving. The average response time of QuickSkill is around 20
ms. This is sufficient to meet the requirement of the mobile MOBA
game, as updated MMRs are only required in the matchmaking for
the next game, which happens after a few seconds from the current
game at the soonest.

4 EXPERIMENTS
To evaluate the performance of QuickSkill, we employ datasets
collected in a well-known mobile MOBA game for two different
game modes. We provide comprehensive comparisons with differ-
ent baseline deep learning models, as well as two state-of-the-art
MMR algorithms from multiple perspectives. All models are imple-
mented using TensorFlow [37]. We train all architectures with a
computing cluster with 8 NVIDIA V100 GPUs.

4.1 Datasets
As current publicly available dataset does not contain sufficient
game features required in this study, we collect new heterogeneous
datasets in a well-known mobile MOBA game‡ for two different
game modes, i.e., normal and ranking. We show summary statistics
of the datasets in Table 1. Both datasets are collected in 20 days,
where data collected in the first 13 days are employed for training
and validation, and the rest are for testing. This generates two large
datasets with up to 80 million samples, which are sufficient for the
model training and evaluation.

Table 1: Statistics of the online MOBA dataset.

Mode Training Validation Testing
Normal 34M 4M 14M
Ranking 44M 8M 28M

We note that both normal and ranking game modes share the
same game context and objectives, while players usually treat two
modes with different seriousness. In the normal gamemode, players
tend to be more casual and sometimes choose unskilled characters
for practice and entertainment. On the contrary, players take the
ranking mode more seriously, as it provides more explicit grade to
the players to exhibit their game level. For each data, we collect 115
features for each snapshot, where snapshots are sampled every 3
minutes in a game. Each data sample only retains the last 12 feature
snapshots, to shear overlength games. Therefore, the dimension
of the input fed to the model becomes 115 × 12. MMRs estimated
by TrueSkill and TrueSkill2 after the cold-start periods will be also
collected as true labels for the skill learning.

As a final remark on data collection, we stress that all data col-
lections were carried out in compliance with applicable regulations.
‡Due to the non-disclosure agreement, the name of the game employed for the case
study cannot be disclosed.
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In addition, the dataset we employ for our study does not contain
personal information about individual players. This implies that
the dataset is fully anonymized and desensitized, thus its use for
our purposes does not raise privacy concerns.

4.2 Benchmarks and Performance Metrics
We implement several baseline models for comparison, and design
dedicated metrics to comprehensively quantify the performance of
proposedQuickSkill.

Benchmarks. We compare the performance of our proposed
QuickSkill with two classical MMR algorithms, namely Trueskill
[8] and Trueskill2 [18]. In particular,

(1) Trueskill is a probabilisticMMRmodel that updates a player’s
rating depending only on the game outcome (win/lose). It
is one of the most popular MMR algorithms and widely em-
ployed in online multiplayer games.

(2) Trueskill2 evolves from its ancestor by introducing extra
features into the model, such as player experience and skill
in other game modes. It usually converges faster with higher
accuracy compared to Trueskill.

We train proposed QuickSkill with labels obtained from both
TrueSkill and TrueSkill2 for comparisons.

Deep learning models employed in QuickSkill are flexible. We
compare the proposed MMR-Net with different machine learn-
ing models, namely Linear Regression (LR), Multilayer Perceptron
(MLP), Gated Recurrent Unit (GRU) and Transformer. MLP is the
most simple neural network architecture that has been widely em-
ployed from different purposes [38]. GRU [39] is a popular model
for time series modelling. We use this architecture to model the
sequential game performance features of players. Transformer [35]
is a simplified version of MMR-Net, as it removes the global atten-
tion in the model. MLP, GRU and Transformer are equipped with
similar embedding layers. In addition, we train a simplified version
of the MMR-Net with features only collected in the last time slice
(MMR-Net𝑒𝑛𝑑 ) for an ablation study.

We show in Table 2 the detailed configuration along with the
number of parameters for each model considered in this study. We
employ standard configuration for LR, MLP and GRU. Transformer
and MMR-Net share similar configurations to ensure fair compari-
son. The MMR-Net𝑒𝑛𝑑 only input the last feature snapshot, while
the rest of setting is the same as the MMR-Net. Overall, the number
of parameters is close for GRU, Transformer and MMR-Net, while
the MLP has the most number of parameters.

Performance Metrics. The accuracy of a MMR algorithm can
be only quantified by indirect indicators, as it is difficult to measure
a player’s game skill with an explicit value. To this end, we de-
sign different performance metrics to evaluate the performance of
proposed QuickSkill from three different perspectives, namely (i)

model precision; (ii) game outcome correlation; and (iii) effects of
players’ game experience. We employ different metrics to evaluate
the performance of our framework, as detailed next.

Since skill estimation is modelled as a regression problem, we
select the classical Mean Absolute Error (MAE) and Mean Square
Error (MSE) to assess the precision of the model. MAE and MSE are
computed to evaluate the difference between the predicted MMRs
𝑠𝑝,𝑖 and the ground truth 𝑠𝑝,𝐾 .

Table 2: Configuration of allmodels considered in this paper.

Model Configuration Parameters

LR A standard LR model with
one-hot features. 1381

MLP
Three hidden layers, with (128,
256, 256) hidden units for each

layers.
3,659,501

GRU
Two hidden layers with (128,
258) hidden units for each

layers.
1,926,765

Transformer
6 hidden layers, model dim =
160, heads = 10, with sequence

length = 12.
1,968,301

MMR-Net
6 hidden layers, model dim =
160, heads = 10, with sequence

length = 12.
2,071,347

MMR-Net𝑒𝑛𝑑
6 hidden layers, model dim =
160, heads = 10, with sequence

length = 1.
1,763,907

Normally, teams with higher total MMRs are supposed to win a
match with a higher probability, if estimated MMRs for individual
player are accurate. The correlations between winning probabil-
ities and team MMR difference therefore become a good indirect
indicator that reflectS the precision of estimated MMRs [12, 18].
We formally define the win rate as:

Win rate =
N𝑊𝑖𝑛𝑠

N
. (5)

HereN𝑊𝑖𝑛𝑠 denotes the number of games where a given team is the
winner, and N is the total number of games used for the evaluation.

Recall that matchmaking systems serve to improve the players’
game experience. Lastly, we evaluate if players’ game experience
can be improved by substituting traditional MMR algorithms with
QuickSkill. This is the most vital metric of matchmaking. In this
study, we use the difference between a player’s kill and death for
this purpose, i.e., |𝐾𝐷 | = |K − D|, where K and D are the number
of kills and deaths of the character controlled by the player. In a
MOBA game, a player always try to kill the opponents and avoid
death. Therefore, large values of |𝐾𝐷 | mean a player is matched
with incompatible teammates or opponents, which may lead to
negative experience for the player or/and other participants [2].

4.3 Offline Results on Novice Skill Estimation
We first train the proposed MMR-Nets and other baselines with
MMRs computed by TrueSkill and TrueSkill2 at game 18, i.e.,𝐾 = 18,
which are theMMRs obtained at the end of the cold-start period (𝐶 =

18). We also investigate how QuickSkill behaves when training
with different MMR labels, i.e., TrueSkill and TrueSkill2, as well as
the influence of training with sequential features. We report the
mean and standard deviation of MAE and MSE, and the win rates
of the teams with higher predicted MMRs of a game (denoted as
win-rateℎ) on both datasets in Table 3. The precision of the MMRs
model has positive correlations with the win-rateℎ metric used in
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Table 3: The mean±std of MAE, MSE as well as win-rateℎ of the team with high predicted MMRs (the higher the better) across
all models considered, evaluated on mobile MOBA datasets collected in normal and ranking game modes with 𝐾 = 18.

Model
Normal Ranking

TrueSkill TrueSkill2 TrueSkill TrueSkill2
MAE MSE win-rateℎ MAE MSE win-rateℎ MAE MSE win-rateℎ MAE MSE win-rateℎ

LR 0.61±0.20 0.40±0.11 51.3% 1.42±0.61 2.08±1.02 50.4% 1.41±0.66 2.00±1.03 51.2% 1.48±0.70 2.22±1.32 52.8%
MLP 0.56±0.18 0.33±0.09 54.2% 1.09±0.31 1.20±0.45 60.8% 0.72±0.32 0.55±0.21 54.1% 1.40±0.56 2.01±1.15 60.4%
GRU 0.54±0.19 0.30±0.09 54.6% 1.07±0.32 1.17±0.41 61.1% 0.69±0.26 0.51±0.18 54.3% 1.37±0.52 1.90±1.09 61.0%

Transformer 0.51±0.18 0.28±0.08 55.2% 1.06±0.31 1.07±0.40 61.3% 0.69±0.24 0.50±0.18 54.4% 1.34±0.50 1.86±1.08 61.1%
MMR-Net 0.49±0.18 0.25±0.08 55.4% 1.02±0.30 1.04±0.36 61.6% 0.66±0.23 0.47±0.17 54.7% 1.30±0.50 1.75±1.06 61.5%

MMR-Net𝑒𝑛𝑑 0.59±0.21 0.37±0.11 53.5% 1.18±0.39 1.42±0.51 59.8% 0.70±0.24 0.53±0.20 54.0% 1.40±0.53 1.96±1.12 60.2%
MMR𝑜𝑟𝑖 0.66±0.27 0.46±0.14 51.4% 1.23±0.44 1.56±0.66 54.0% 1.41±0.67 2.02±0.99 51.0% 1.41±0.55 1.98±1.12 53.6%

the table. MMR-Net𝑒𝑛𝑑 s are only trained with end-game feature
snapshots, and MMR𝑜𝑟𝑖 denotes original MMR values estimated by
TrueSkill/TrueSkill2 in each game.

Observe that the proposed MMR-Nets in general obtain superior
performance over other benchmark models for both datasets, as
they achieve lower MAE/MSE and higher win-rateℎ . This suggests
that the omnidirectional attentions improve the representability
of the model, which enables better encoding of the heterogeneous
game features. In addition, sequential models, including MMR-Net,
Transformer and GRU, achieve better performance over the MLP
and LR. In comparison with the MMR-Net𝑒𝑛𝑑 , which only employs
the last feature snapshot for training, the MMR-Net performs signif-
icantly better. This indicates that the skill of a player can be profiled
more precisely by evaluating his performance at different phases
of the game, demonstrating the superiority of the feature design
described in section 3.3.

Taking a closer look at Table 3, it appears that the original
MMR𝑜𝑟𝑖 estimated after each game achieves the worst performance,
which indicates that TrueSkill and TrueSkill2 in the cold-start pe-
riod are inaccurate and unreliable. As a comparison, our MMR-Nets
obtain up to 4% and 7.9% higher win-rateℎ , yielding a remarkable
improvement. In addition, MMRs estimated by TrueSkill2 are more
accurate than its TrueSkill, as models trained with TrueSkill2 labels
achieve significantly better performance in terms of win-rateℎ . In
conclusion, by combining the MMR-Nets with TrueSkill2 labels,
proposed QuickSkill obtains the best results across all metrics
on both datasets, by achieving up to 21.1% lower MAE and 11.2%
higher win-rateℎ than other baselines. Furthermore, incorporat-
ing sequential features at different phases in a game significantly
improves the performance of QuickSkill.

Correlation of TeamWin Rate and MMRDifference. Next,
we investigate the correlation between game outcomes and team
MMR differences. As the teamMMR is the summation of all players’
MMRs in the team, the more accurate the MMR model is, teams
with higher total MMRs should win with higher probabilities. This
means that win rates should have a stronger positive correlation
with the teamMMR difference.We compute the win rate of the team
as a function of the team MMR difference of three MMR models
considered for the normal game mode, as shown in Fig. 5. Observe
that team win rates grow with the MMR team difference for all
MMR models, as expected. Compared to other baselines, proposed
QuickSkill exhibits the strongest positive correlation between the
MMR difference and win rates, which suggests that QuickSkill is
more accurate than its counterparts.

Figure 5: Teamwin rates w.r.t. teamMMRdifference of three
MMR models evaluated in the normal mode dataset. The
bars in the figures represent the number of games in each
bucket.

Team skill difference generally grows with the team MMR differ-
ence 𝜑 . A large 𝜑 means that the MMR model believes the match-
making is unfair, and should be avoided. We denote games with
team MMR difference 𝜑 > 40 (suggested by the game designer) as
“unfair” games identified by the MMR models (the leftest and right-
est bars in the figure). Interestingly, TrueSkill senses the most num-
ber of unfair games, whereas these games are not truly unfair. This
is reflected by the fact that both underdog (lowerMMR) and favorite
(higher MMR) teams identified by TrueSkill only achieve almost
50% win rates. TrueSkill2 only senses 0.85% unfair games, while
these games have more extreme win rates. Notably, the proportion
of unfair games identified by proposed QuickSkill is 20.87%, and
the win rates of these games are the most extreme. This means
those games identified byQuickSkill were indeed unfair games.
By setting the team MMR gap threshold 𝜑 = 40, games with 𝜑 > 40
will be eliminated, if using our QuickSkill for matchmaking. This
reduces significant amount of overwhelming games.

4.4 Learning with Different “Future”
Selecting an appropriate 𝐾 as targets is not straightforward, as
MMR labels 𝑠𝑝,𝐾 with a small 𝐾 are inaccurate and unstable, while
configuring a large 𝐾 may cause the labels to over deviate from
the players’ skills in early games, as players make progress and
gain experience in every game. In order to find proper MMRs for
learning targets, we tune label 𝑠𝑝,𝐾 with different 𝐾 , to evaluate the
effect of learning with different “future”. We show the win-rateℎ
results of predictions of QuickSkill and corresponding ground
truths for both TrueSkill and TrueSkill2 in two datasets in Table 4.

Observe that 𝐾 = 18 in general achieves the highest win-rateℎ
for both QuickSkill and ground truths for most of the cases. The
win-rateℎ grows with the 𝐾 when 𝐾 ≤ 𝐶 , but become stable af-
terward. This suggests that simply setting 𝐾 = 𝐶 delivers a good
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Table 4: Comparisons of win-rateℎ of the team with high predicted/ground truth MMRs between different 𝐾 configurations.

𝐾

Normal Ranking
TrueSkill TrueSkill2 TrueSkill TrueSkill2

QuickSkill Ground truth QuickSkill Ground truth QuickSkill Ground truth QuickSkill Ground truth
12 54.1% 58.1% 60.2% 71.9% 53.9% 57.5% 60.2% 72.3%
15 54.5% 59.3% 60.8% 72.8% 53.7% 58.2% 60.8% 73.8%
18 55.4% 59.6% 61.6% 72.3% 54.0% 58.5% 61.5% 74.0%
21 55.3% 59.4% 61.3% 70.6% 53.9% 58.2% 61.7% 72.6%

Figure 6: Ratios of playerswith |𝐾𝐷 | ≥ 8 in a gamew.r.t. team
MMR difference comparison in the normal mode dataset.
Line charts refer to the ratio of players with |𝐾𝐷 | ≥ 8 in
each bucket and bar charts represent the number of players.

performance for the objective of novice skills estimation, and can be
employed as a standard configuration. On the other hand, TrueSkill2
always achieves better results over TrueSkill, for both QuickSkill
prediction and ground truth. This reconfirms that TrueSkill2 pro-
vides more accurate and reliable MMR labels for learning.

4.5 Online Effect on Players’ Game Experience
In a real online game, a player’s game experience is dramatically
affected by the player’s |𝐾𝐷 | = |K − D|. Large values of |𝐾𝐷 | sug-
gest that the player overwhelms or is overwhelmed by opponents,
leading to negative game experience. MMR algorithms used for
matchmaking affect the skills of players, which naturally influ-
ence the |𝐾𝐷 | of participants. To evaluate the relation between
different MMR algorithms employed and players’ game experience,
we calculate the ratio of players with |𝐾𝐷 | ≥ 8 as a function of
team MMR difference in normal games, as shown in Fig. 6. These
games with extreme |𝐾𝐷 | > 8 result in frustration for new
players based on our surveys, and are one of the key reasons
for churn [40]. We select QuickSkill trained with TrueSkill2 for
a case study.

Similarly, we denote games with team difference 𝜑 > 40 as “un-
fair” games sensed by MMR models. Observe that players with
extreme |𝐾𝐷 | were quite evenly distributed across difference in-
tervals calculated by MMR TrueSkill2 (green bars), while they are
concentrated inQuickSkill’s intervals at the two poles (blue bars).
Specifically, in unfair games identified by QuickSkill, the propor-
tion of players with |𝐾𝐷 | ≥ 8 is 3.73%, while the same metric is
0.08% for TrueSkill2. This suggests that by setting the team MMR
gap threshold 𝜑 = 40, using QuickSkill for matchmaking can
effectively reduce extreme player experience, which significantly
improves their satisfaction.

Tuning attention to Fig. 7, where we show the ratio of players
with |𝐾𝐷 | ≥ 8 as a function of the team MMR difference ranking

Figure 7: Ratios of playerswith |𝐾𝐷 | ≥ 8 in a gamew.r.t. team
MMR difference comparison in the ranking mode dataset.
Line charts refer to the ratio of players with |𝐾𝐷 | ≥ 8 in each
bucket and bar charts represent the quantity of players.

games. Compared to TrueSkill, the performance of ourQuickSkill
is also remarkable. In the unfair games identified byQuickSkill, the
proportion of players with |𝐾𝐷 | ≥ 8 is 2.01%, while the same metric
is 0.09% for TrueSkill. These evaluations prove the effectiveness of
QuickSkill in a different game mode, which further demonstrates
the robustness of the proposed system.

4.6 Win Rate Comparison in Cold-start Periods
We now delve deeper into the performance of QuickSkill at differ-
ent stages of the cold-start period. To this end, in Fig. 8 we show the
correlation between teamwin rate and MMR difference, where each
subplot in the figure collects all games with different average num-
bers of matches that participants have played. This corresponds to
different stages of the cold-start period. Recall that the team win
rate should be positively related to the team MMR difference, if
MMRs calculated for each player are accurate.

Observe that our QuickSkill performs significantly better than
other baselines when average game numbers are small (i.e., average
game number < 15), while its advantage fades when its counter-
parts gain more games for learning. This is reflected by the slope
of each curve – QuickSkill exhibits much stronger correlations
between team win rate and MMR difference at early games than
other baselines. Their performance becomes fairly close when av-
erage numbers of games is between [15, 18). Interestingly, 18 is
exactly the number of games of the cold-start period. After game
18, the system switches to TrueSkill2 for matchmaking. As when
exceeding the cold-start period, QuickSkill shows no advantages
over TrueSkill2, while it has already fulfilled its goal for beginners.

4.7 Attention Visualization
We conclude our experiments by examining the exact sequential
importance learned by the proposed MMR-Net. To this end, we
visualize as a heatmap the averaged weights of the omnidirectional
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Figure 8: Win rate comparison with respect to team MMR difference of three MMR models across different average numbers
of games evaluated in the normal mode dataset. Bars in the figures represent the number of games in each difference interval.

Laning Phase Teamfight Game ends

Figure 9: Heatmap visualization of the omnidirectional at-
tention module. Weights are averaged over layers.

attention module of a sample in Fig. 9. Lighter color represents
greater attention weight values. Observe that the MMR-Net com-
mits less attention at the early stage of the game corresponding
to the laning phase. The importance grows with time, reaching a
peak at the final team battle, which becomes a showdown of the

game. The player’s performance at these stages highly affects the
judgment of the model. The significance drops rapidly with the end
of the game, as the outcome becomes a foregone conclusion. This
shows that the MMR-Nets indeed capture keys that affect the skill
of a player in a MOBA game, which highly meets our expectations.

5 CONCLUSIONS
This paper proposes QuickSkill, an original deep learning based
novice skill estimation framework to improve the player skill rating
in the cold-start period for traditional MMR algorithms.QuickSkill
collects multiple feature snapshots in a game to comprehensively
profile the performance of players, and predicts their future MMRs,
which are generally more accurate and reliable. To model the cor-
relations between players’ game abilities and their in-game perfor-
mance, we design a dedicated model MMR-Net, which evolves the
classical Transformer with an omnidirectional attention operator.
This augments the representability of the model and enables more
accurate MMR predictions. We evaluate the proposed framework
on anonymized datasets collected in two different game modes
of a popular mobile MOBA game. Offline experiment results sug-
gest thatQuickSkill achieves superior performance over TrueSkill,
TrueSkill2 and other baseline models in terms of accuracy. Im-
portantly, our online evaluations show that usingQuickSkill for
matchmaking leads to significantly better game fairness by reduc-
ing overwhelming games and players’ extreme game experience. To
the best of our knowledge, ourQuickSkill is the first deep learning
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based framework that tackles the cold-start problem of skill rating
in online multiplayer games.
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