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Abstract—Existing recommendation methods usually train sev-
eral independent modules for each rating information instead
of an end-to-end manner. Therefore, these methods may be
incapable of collaborative learning leading to sub-optimal results
in predicting users’ overall interests. The main disadvantage of
those two-stage methods is that the overall rating heavily relies
on the predicted sub-ratings, and the predictive error of sub-
ratings is accumulated during the regression step. Moreover,
the regression model is trained with unbiased sub-ratings but
used with biased predictive sub-ratings. Meanwhile, the separate
training pattern induces more training overhead. To address
these problems, we propose a collective model to predict a user’s
overall rating, which can learn each of the multi-criteria sub-
scores simultaneously in an end-to-end manner. This enables the
proposed method to improve its prediction quality by transferring
the knowledge of criterion to the domain of overall ratings.
It reduces the dependence of the predicted score of a specific
criterion, making the overall system more robust. In addition,
our end-to-end method avoids learning the regress part directly
from the unbiased sub-ratings, improving the performance of the
overall model. Experiments on three real-world datasets show
that our proposed architecture achieves up to 13.14% lower
prediction error over baseline approaches.

Index Terms—Latent factor model, Multi-criteria recom-
mender system, Collaborative filtering, Collective matrix factor-
ization

I. INTRODUCTION

In a recommender system, users can give multi-criteria rat-
ings for each item, e.g., an overall and detailed ratings of this
item’s attributes. Thus, it is important to find out an effective
method for exploiting users’ such rating information to predict
their interests. Fortunately, recent research on the multi-criteria
recommender system allows to estimate the overall scores of
an item by weighting the sub-score of each of its attribute, to
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reflect a user’s preference of the item. As it weights an item
using multi-dimensional perspectives, the multi-criteria recom-
mender systems perform better over single-criterion counter-
parts in terms of the predictive accuracy, and are used more
frequently in both industry and academia, e.g.BeerAdvocate
[1]–[3] TripAdvisor Yahoo!Movies [4], [5].

One crucial challenge for the multi-criteria recommender
system is integrating the user’s multi-criteria ratings to predict
the overall rating of the item. To this end, traditional multi-
criteria recommender systems usually predict overall rating of
an item to a user in two separate stages (e.g. [1], [6]). They first
predict ratings of each attribute of the item, and then employ
a separate regression model to integrate those scores to obtain
an overall rating. However, there are still several problems,
making separate stage methods challenging:

1) Low performance of sub-scored predictive model. The
overall rating heavily relies on the predicted sub-scored
of each attribute, which is particular difficult to predict.
A possible reason is that each sub-scored predictive
model are trained separately, the knowledge of each
criterion cannot be transferred and shared. As a result,
inaccurate prediction of the sub-scores will significantly
affect the overall system, lowering the performance of
the entire recommender systems.

2) Bias in regression model. The regression model are
trained on unbiased rated sub-rating, while are utilized
to predict the overall rating with predicted biased sub-
rating. Such a gap may hurt the generalization perfor-
mance of regression model.

To overcome these issues, we propose an end-to-end col-
lective filtering method in the multi-criteria rating system,
to integrate the sub-scores and overall rating into a unique
architecture. Specifically, we employ a latent factor model [7]
to jointly learn users’ overall preferences, as well as their
preferences on each criterion of an item. The sub-scores of
each criterion are treated as latent variables of the model,
which are hidden and do not need to be estimated in a
separate process. The knowledge of multi-criteria ratings can
be shared and transferred to the domain of overall ratings,
which reduces the dependency of the predicting of sub-ratings
and adaptively captures the latent information from different
criteria. In addition, the regression part of our method is
trained with the predicted biased sub-ratings, which improves
the generalization performance as it is the same as the pre-
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dicting step. Our proposed method makes the overall system
more robust and accurate, as it does not heavily rely on the
predicted score of a specific criterion.

Overall, this paper makes the following three contributions,
namely:

1) We propose an end-to-end collective factor model to
unify the learning processes of sub-scores and overall
rating. This reduces the dependency of the score of each
attribute, improving the robustness of the entire system;

2) We theoretically analyze the knowledge transferring of
proposed model, and investigate the impact of different
latent vector sharing schemes between users and items.
Experiments show that latent information can be auto-
matically captured in our model, since keeping both the
user latent vector and the item latent vector independent
outperforms over other two sharing methods;

3) We compare our proposed architectures with several
baseline methods on three real-world datasets. The re-
sults show that our solution outperforms baseline ap-
proaches by achieving up to 13.14% lower prediction
error over state-of-the-art approaches.

II. RELATED WORK

To solve the task of the multi-criteria recommender system,
we propose a collective factor model which is based on the col-
lective matrix factorization [8]. Therefore, both multi-criteria
based and collective matrix factorization based approaches are
related to our work. In this section, we briefly review related
literatures.

A. Multi-criteria recommendation approaches

A primary method to exploit the information of multi-
criteria ratings is extending the user similarity calculation from
single-criterion to multi-criteria. Nilashi et al. [9] exploited a
fuzzy method for the calculation of similarity between users
by employing the multi-criteria ratings. Kermany et al. [10]
integrated the fuzzy cosine and Jaccard similarity to obtain
the final similarity between users/movies.

Recently, two-stage based methods emerge and become
more popular in the multi-criteria recommender system. At
the first stage, the multi-criteria ratings of the target item are
estimated. The overall ratings are obtained by learning the
weights of each sub-score by a separate model, such as linear
regression [1], support vector regression [3], [11] and neural
networks [6], [12]. When the multi-criteria ratings are not
explicitly expressed by users, the text reviews can be used to
uncover the aspect (similar to criterion). Individual attitude on
each aspect can be classified into positive, neutral or negative
[12]–[14]. Such method also requires to estimate the individual
attitude towards each aspect at the first stage and then predicts
the overall rating.

The rating data of a multi-criteria ratings in recommender
system can be represented as a 3-D tensor, where the first
two dimensions represent users and items, and the third is the
ratings of different criteria. Therefore, the tensor factorization
and higher order singular value decomposition can be used to
learn preferences of users and attributes of items [15]–[21].

For these two types of methods, the predictive model can
be trained end-to-end and a user’s overall rating is directly
estimated by the model, which does not require to compute
the multi-criteria ratings initially.

Deep learning-based methods have become a popular re-
search topic, as evidenced by recent studies [22]–[29]. [23]
introduces a novel approach to tackle the challenge of multi-
criteria recommendation. Their method leverages the power of
sparse autoencoders to balance and integrate multiple criteria,
leading to improved recommendation accuracy. Research in
[24] proposes a deep neural network-based matrix factorization
method for filtering information in multi-criteria recommenda-
tion systems. Their approach aims to enhance recommendation
accuracy and efficiency. Paper [22] presents a deep learning-
based approach to multi-criteria recommendation for hotel
recommendations, incorporating Dempster-Shafer theory to
handle uncertainty and improve recommendation accuracy.
In a different approach, [25] introduces a context-aware rec-
ommendation system. Their method incorporates contextual
information to enhance recommendation accuracy and rele-
vance. [27] investigates the effect of incorporating contex-
tual information on the overall rating and recommendation
accuracy in multi-criteria recommendation systems. Finally,
work in [28] accounts for multiple stakeholder preferences and
utilize multi-criteria ratings to improve recommendation per-
formance. Overall, these studies highlight the potential of deep
learning-based methods to enhance the accuracy, efficiency,
and relevance of multi-criteria recommendation systems.

B. Collective matrix factorization based approaches
The collective matrix factorization (CMF) can be employed

to incorporate the rating data and the auxiliary data [8],
[30], when the auxiliary data is available. The collective
factorization method simultaneously co-factorizes a variety of
matrices when an entity participates in multiple relations. It
has demonstrated superiority when integrating diverse auxil-
iary resources, such as social networks [31]–[34], geographical
information [35]–[37] and contents of items [8], [38], as it
can effectively embed those rich resources [38]–[40]. Singh
et al. [8] proposed a collective matrix factorization model
to improve the predictive accuracy by integrating multiple
matrices. Based on the collective matrix factorization, Liu et
al. [41] incorporated both explicit and implicit feedback of
users to improve recommendation quality. Similarly, Yuan et
al. [31], [42] exploited collective matrix factorization method
to jointly model data from different sources, which improve
the performance of the model. Ma et al. [32] extended the
probabilistic matrix factorization approach to fuse both the
user-item rating matrix and the social network. Yang et al. [43]
combined the factor-based model and random walk to alleviate
the sparisty problem in the recommender system. Zhao et al.
[44] built user profiles by directly combining these diverse
behavioral signals. The data of each behavior is represented by
a matrix. A collective factorization based method is utilized to
co-factorize these behavioral tensor for the recommendation.
In [45], the social matrix factorization method is combined
with the topic matrix factorization approach to jointly model
different ratings, item reviews and social relations.
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With the rapid growth and prevalence of location tracking
services, increasing amount of mobile data become available.
Similar to social relations, the user location matrix can be co-
factorized with the user activity matrix to provide location as
well as activity recommendations for users [35], [36], [46].
Zheng et al. [46] exploited the collective matrix factorization
method to solve the problem of location-related queries. Zhao
et al. [36] combined users’ ratings with their geographical
information to solve the cold-start and sparsity problem in
recommender systems. When the side information of users
and items is available, the collective matrix factorization based
approaches can be used to embed those rich resources [38]–
[40], [47]. Fang et al. [39] co-factorized the user information
matrix and the item information matrix to solve the task of
recommendations in online scientific communities. Saveski et
al. [38] exploited items’ properties and user preferences via
collective embedding to solve the item cold-start problem. Liu
et al. [40] proposed a non-negative matrix factorization based
method to jointly model both consistent and complementary
information among multi-view data.

C. Limitations of traditional methods

Although the user similarity calculated by multi-criteria
ratings is in general more accurate, such methods usually
suffer from the poor efficiency and low robustness, as most
of existing multi-criteria based models are not trained in an
end-to-end manner. As it heavily relies on the the sub-scores
on different attributes, the overall accuracy of the model is
highly sensitive to the its sub-processes.

To resolve this problem, we propose a collective factor
model, which combines contributions of overall ratings and
multi-criteria ratings in a linear manner. The experimental
results demonstrate that our method is superior over existing
multi-criteria based approaches in terms of accuracy of overall
rating predictions.

III. THE PROPOSED METHOD

In this section, we first introduce the notations used in this
work in Table I. Without loss of generality, individual overall
ratings can be represented as a weighted adjacent matrix
R(0) = {r(0)ui }n×m, where r

(0)
ui is the overall rating that user

u gives to the item i. n and m are the number of users and
items in the system, respectively. Similarly, an adjacent matrix
R(α) = {r(α)ui } can be used to represent users’ ratings on
criterion α. The task of a multi-criteria recommender system
is estimating a user’s overall rating by utilizing the ratings on
each criterion.

A. Latent factor model

In this paper, the latent factor model is adopted to learn
users’ preferences, jointly mapping users and items to the same
space with dimensionality k. We denote two latent vectors as
xu and yi, as the preference of user u and the attribute of item
i respectively. The predictive score can be easily obtained by
the inner product of these two latent vectors:

r̂ui = xT
uyi. (1)

TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description

n The user number in the system
m The item number in the system
c The number of criteria
R(0) The overall rating matrix
r
(0)
ui The overall rating that user u gives to item i

r̂
(0)
ui

The predictive overall rating between user u
and item i

R(α) The rating matrix w.r.t criterion α

r
(α)
ui The rating on criterion α that user u gives to item i

r̂
(α)
ui

The predictive rating on criterion α between user u
and item i

x
(0)
u ,y

(0)
i

The latent factor vector of user u and item i w.r.t

overall ratings

x
(α)
u ,y

(α)
i

The latent factor vector of user u and item i for
ratings on criterion α

λ0
The regularization coefficient of the latent model
w.r.t overall ratings

λα
The regularization coefficient of the latent model
for ratings on criterion α

Θα
The hyper-parameter controlling contributions of
ratings on criterion α

wα The weight of the predictive score on criterion α

ε The error variable

The latent factor model has been widely studied in recent
years due to its flexibility and scalability. It is adaptable to
application-specific requirements, such as biases of users and
items [7]. Then, Eq. (1) can be extended as:

r̂ui = µ+ bi + bu + xT
uyi, (2)

where bu and bi are the biases of user u and item i, respec-
tively, and µ is the global average rating.

We choose the biased matrix factorization (BMF) as our
baseline approach for the following reasons. First, it outper-
forms traditional recommendation algorithms such as collab-
orative filtering, basic matrix factorization and probabilistic
matrix factorization in terms of rating prediction [48], [49].
Second, it has comparable complexity with the basic matrix
factorization.

Given ratings observed, parameters in BMF model can be
learned by minimizing the following loss function:

min
x∗,y∗,b∗

∑
u,i

(rui − r̂ui)
2 + λ(∥xu∥2 + ∥yi∥2 + b2u + b2i ), (3)

where λ is the weight of the regularization term. This can
reduce the overfitting in training process. x∗, y∗ and b∗ are
the general form of xu, yi, bu and bi, respectively. Values of
xu, yi, bu and bi are initialized randomly from a Gaussian
distribution ( e.g. mean 0 and standard deviation of 0.01), and
optimized by stochastic gradient descent (SGD) approach:

bu ← bu + γ · ((rui − r̂ui)− λ · bu)
bi ← bi + γ · ((rui − r̂ui)− λ · bi)
xu ← xu + γ · ((rui − r̂ui) · yi − λ · xu)

yi ← yi + γ · ((rui − r̂ui) · xu − λ · yi)

(4)
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where γ is the learning rate.
In this section, we introduce the overall framework of the

proposed collective factor model (CFM) employed for the
multi-criteria recommender system. Our method simultane-
ously co-factorizes the overall rating matrix and multi-criteria
rating matrices, which contributes the overall performance.

B. Latent factor model for overall ratings

With the overall rating matrix R(0), the biased matrix
factorization model can be learned by minimizing the loss
function:

min
x∗,y∗,b∗

∑
u,i

(r
(0)
ui − r̂

(0)
ui )

2+λ0(∥x(0)
u ∥2+∥y

(0)
i ∥

2+(b(0)u )2+(b
(0)
i )2),

(5)
where λ0 is the regularization parameter. x(0)

u , y(0)
i , b(0)u and

b
(0)
i are model parameters with respect to overall ratings. x∗,
y∗ and b∗ are general forms of x

(0)
u , y(0)

i , b(0)u and b
(0)
i . r̂(0)ui

is the predictive score defined as follow:

r̂
(0)
ui = µ(0) + b

(0)
i + b(0)u + (x(0)

u )Ty
(0)
i . (6)

We denote the parameter set of the latent factor model as S(0)

for overall ratings.

C. Latent factor model for multi-criteria ratings

By using ratings on criterion α, we can also train a biased
matrix factorization model by minimizing the loss function:

min
x∗,y∗,b∗

∑
u,i

(r
(α)
ui − r̂

(α)
ui )2 + λα(∥x(α)

u ∥2

+ ∥y(α)
i ∥

2 + (b(α)u )2 + (b
(α)
i )2),

(7)

where x
(α)
u , y

(α)
i , b

(α)
u and b

(α)
i are model parameters with

respect to ratings on criterion α. r̂(α)ui is the predictive score
on criterion α defined as follow:

r̂
(α)
ui = µ(α) + b

(α)
i + b(α)u + (x(α)

u )Ty
(α)
i . (8)

Similarly, we use S(α) to represent the parameter set of the
latent factor model with respect to the ratings on criterion α.
When multi-criteria ratings are unavailable, only Eq. (6) is
exploited to predict missing values in the overall ratings. In
this paper, both overall ratings and multi-criteria ratings are
taken into consideration to train the predictive model.

D. Collective factor model

When both overall ratings and multi-criteria ratings are
available, we combine Eq. (5) and Eq. (7) in a unified
framework. We assume that the final predictive score of the
overall rating r̂ui is a linear combination of the sub-rating of
each criterion, with the predicted overall rating, i.e.:

r̂ui = r̂
(0)
ui +

c∑
α=1

wαr̂
(α)
ui + ε, (9)

where wα is the weight of the predictive score r̂
(α)
ui on

criterion α, and ε is the error variable. The term r̂
(0)
ui can

be viewed as a modified version of the overall rating, r̂ui.

However, we contend that r̂(0)ui possesses the ability to predict
the final overall ratings without requiring additional criterion
knowledge. Notably, the proposed model reduces to Bayesian
matrix factorization (BMF) when all wα are equal to 0,
and it can capture criterion knowledge when wα values are
greater than 0. The adaptability of wα can be learned during
training, enabling our model to perform well irrespective of the
relevance of domain information. The following experimental
results validate this argument. The final objective function
of the collective factor model includes three parts: the loss
of overall ratings, the loss of multi-criteria ratings and the
regularization term, defined as:

L = L0 +

α∑
c=1

ΘαLα +Φ

= min
x∗,y∗,b∗

∑
u,i

(r
(0)
ui − r̂ui)

2 +

c∑
α=1

Θα

∑
u,i

(r
(α)
ui − r̂

(α)
ui )2 +Φ,

(10)
where c is the number of criteria and Θα is a hyper-parameter
that controls contributions of ratings on criterion α. Φ is the
regularization term to reduce overfitting:

Φ = λ0(∥x(0)
u ∥2 + ∥y

(0)
i ∥

2 + (b(0)u )2 + (b
(0)
i )2)

+

c∑
α=1

λα(∥x(α)
u ∥2 + ∥y

(α)
i ∥

2 + (b(α)u )2 + (b
(α)
i )2 + w2

α).

(11)
We apply the SGD approach to train the overall model and
obtain the optimal parameters in Eq. (10). For a given overall
rating r

(0)
ui and corresponding multi-criteria ratings r

(α)
ui (α =

1, 2, ..., c), the model parameters are updated as follows:

x(0)
u ← x(0)

u + γ(euiy
(0)
i − λ0x

(0)
u )

y
(0)
i ← y

(0)
i + γ(euix

(0)
u − λ0y

(0)
i )

b(0)u ← b(0)u + γ(eui − λ0b
(0)
u )

b
(0)
i ← b

(0)
i + γ(eui − λ0b

(0)
i )

x(α)
u ← x(α)

u + γ(euiwαy
(α)
i + e

(α)
ui Θαy

(α)
i − λαx

(α)
u )

y
(α)
i ← y

(α)
i + γ(euiwαx

(α)
u + e

(α)
ui Θαx

(α)
u − λαy

(α)
i )

b(α)u ← b(α)u + γ(euiwα + e
(α)
ui Θα − λαb

(α)
u )

b
(α)
i ← b

(α)
i + γ(euiwα + e

(α)
ui Θα − λαb

(α)
i )

wα ← wα + γ(euir̂
(α)
ui − λαwα)

ε← ε+ γeui

(12)

where eui = r
(0)
ui − r̂ui, e

(α)
ui = r

(α)
ui − r̂

(α)
ui . γ is the learning

rate.
From Eq. (12), parameters are updated by both overall

ratings and multi-criteria ratings. This means that the knowl-
edge of multi-criteria ratings can be transferred to the domain
of overall ratings. Knowledge sharing is widely employed
in traditional recommender systems, e.g. social recommender
systems [31], content-based recommender systems [38], [50]
and Point-of-Interest recommender systems [35].

A simple way to share the knowledge is utilizing a common
latent vector between different users or/and items. We employ
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≈ ≈ ≈ ≈……

𝑹 𝟎 ∽ 𝑿 𝟎 𝑻
Y 𝟎 𝑹 𝟏 ∽ 𝑿 𝟏 𝑻

Y 𝟏
𝑹 𝟐 ∽ 𝑿 𝟐 𝑻

Y 𝟐 𝑹 𝒄 ∽ 𝑿 𝒄 𝑻
Y 𝒄

Independent(CFMind): Y 𝟎 ≠ Y 𝟏 ≠ Y 𝟐 ≠. . . . . . ≠ Y 𝒄𝑿 𝟎 ≠ 𝑿 𝟏 ≠ 𝑿 𝟐 ≠. . . . . . ≠ 𝑿 𝒄

≈ ≈ ≈ ≈……

𝑹 𝟎 ∽ 𝑿 𝟎 𝑻
Y 𝟎 𝑹 𝟏 ∽ 𝑿 𝟏 𝑻

Y 𝟏 𝑹 𝟐 ∽ 𝑿 𝟐 𝑻
Y 𝟐 𝑹 𝒄 ∽ 𝑿 𝒄 𝑻

Y 𝒄

Overall rating matrix Multi-criteria rating  matrices

Fig. 1. The illustration of CFM method.

three variants of knowledge sharing schemes in our CFM,
namely (1) sharing knowledge between overall and all criterion
ratings for a user (CFMuser); (2) sharing knowledge between
overall and all criterion rating for a item (CFMitem); and (3)
sharing knowledge implicitly for a user or an item (CFMind).
We show the structures of these three different knowledge
sharing methods in Figure 1. Specifically,

1) The CFMuser shares the user knowledge by forcing
x
(0)
u = x

(1)
u = ... = x

(c)
u , while freeing other parameters

independent.
2) The CFMitem shares the item knowledge by keeping

y
(0)
i = y

(1)
i = ... = y

(c)
i , while other user latent vectors

are not constrained.
3) The CFMind does not apply any constraints on the user

latent vector and the item latent vector, while keeping
x
(0)
u ̸= x

(1)
u ̸= ... ̸= x

(c)
u and y

(0)
i ̸= y

(1)
i ̸= ... ̸= y

(c)
i .

This introduces more flexibility to the model.

IV. EXPERIMENTS

In order to evaluate the performance of the proposed
method, we compare it with 8 baseline approaches on 3
benchmark multi-criteria datasets.

A. Dataset

The dataset we used include TripAdvisor, Yahoo!Movies and
BeerAdvocate. Specifically,

• TripAdvisor. The TripAdvisor dataset was released by
Wang et al. [51], which consists of 1, 725 users, 3, 347
items and 29, 962 ratings. This dataset is very compre-
hensive in terms of criteria, i.e. Service, Rooms, Sleep
Quality, Location, Cleanliness and Value. The rating scale
of TripAdvisor dataset is 1− 5.

• Yahoo!Movies. The Yahoo!Movies dataset was collected
by Jannach et al. [52] which embraces four criteria,
including (Acting, Direction, Story and Visuals) for users.
Consistent with prior studies [52], [53], we adopt a
common practice of converting the ratings, which were
originally provided on a 13-point scale (ranging from A+
to F), to the standard 1-5 rating scale.

• BeerAdvocate. The BeerAdvocate website allows a user
to rate four attributes (Aroma, Apprearance, Palate and
Taste) of beer. By removing those inactive users, the pre-
processed dataset includes 3, 238 users, 2, 893 items and
88, 242 ratings. The BeerAdvocate also employs a 1− 5
scaling system for both overall and multi-criteria ratings.
However, the difference between two consecutive levels
is 0.5, indicating that users can evaluate beers on a total
of 9 distinct levels.

For all datasets, we exclude samples with missing values
in multi-criteria ratings. Additionally, we limit our analysis to
users who have rated more than 10 items, as inactive users are
less pertinent in the system.. We show details of the datasets
employed are given in the Table II.

TABLE II
THE STATISTICS OF DATASETS.

Datasets #Users #Items #Ratings Sparsity Scale
TripAdvisor 1595 539 10273 98.81% [1,5]

Yahoo!Movies 1797 1279 39489 98.28% [1,5]
BeerAdvocate 3238 2893 88242 99.06% [1,5]

We employ cross-validation method to evaluate the accuracy
of each approach based on five independent instances over
training and test set [54], [55]. The training set consists of 80%
of the original data and the remaining data comprises the test
set. Our purpose is predicting individual overall ratings and
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Algorithm 1 Collective factor model.
Input:

R(0): the overall rating matrix;
R(α) (α = 1, 2, ..., c): the multi-criteria rating matrix;
γ: the learning rate;
Iter: the iteration count;

Output:
X(0),Y(0): the user and item latent factor matrix w.r.t the
overall rating;
X(α),Y(α) (α = 1, 2, ..., c): the user and item latent factor
matrix w.r.t criterion α;
b
(0)
u , b

(0)
i : the bias of user and item w.r.t the overall rating;

b
(α)
u , b

(α)
i (α = 1, 2, ..., c): the bias of user/item w.r.t criterion

α ;
wα (α = 1, 2, ..., c): the weight of predictive score on criterion
α;

1: randomly initialize all parameters;
2: for it from 1 to Iter do
3: for each (r

(0)
ui , r

(1)
ui , r

(2)
ui , ......, r

(c)
ui ) in training set do

4: // Computing Loss
5: set r̂(0)ui ← use Eq. (6) with input (x(0)

u ,y
(0)
i );

6: for α from 1 to c do
7: set r̂(α)

ui ← use Eq. (8) with input (x(α)
u ,y

(α)
i );

8: end for
9: set r̂ui ← use Eq. (9) with input r̂(0)ui , r̂

(1)
ui , r̂

(2)
ui , ...., r̂

(c)
ui ;

10: set L← use Eq. (10) with input of r̂ui, r
(0)
ui ;

11: // Updating
12: update x

(0)
u ← x

(0)
u − γ ∂L

∂x
(0)
u

;

13: update y
(0)
i ← y

(0)
i − γ ∂L

∂y
(0)
i

;

14: update b
(0)
u ← b

(0)
u − γ ∂L

∂b
(0)
u

;

15: update b
(0)
i ← b

(0)
i − γ ∂L

∂b
(0)
i

;

16: for α from 1 to c do
17: update x

(α)
u ← x

(α)
u − γ ∂L

∂x
(α)
u

;

18: update y
(α)
i ← y

(α)
i − γ ∂L

∂y
(α)
i

;

19: update b
(α)
u ← b

(α)
u − γ ∂L

∂b
(α)
u

20: update b
(α)
i ← b

(α)
i − γ ∂L

∂b
(α)
i

;

21: update wα ← wα − γ ∂L
∂wα

;
22: end for
23: update ε← ε− γ ∂L

∂ε
;

24: end for
25: end for

we select Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) [5], [56]–[58] to evaluate the performance of
all models considered:

MAE =
1

|EP |
∑

(u,i)∈EP

|r(0)ui − r̂ui|

RMSE =

√√√√ 1

|EP |
∑

(u,i)∈EP

(r
(0)
ui − r̂ui)2.

(13)

1) Baseline methods: We compare our method with 8
baseline methods. Specifically,

• UserKNN. This is the standard user-based collaborative
filtering method. We employ the Pearson correlation to
measure similarities of user pairs. Top-100 users are
selected as the target user’s neighbors.

• MultiUserKNN. This method calculates the similarity
of two users on each criterion and similarities on all

criteria are averaged as the final similarity between these
two users. In a similar way, the number of the nearest
neighbors is also set to 100.

• Biased matrix factorization (BMF) [7]. BMF is the base
model of our method. In this method, we only make use
of the overall ratings to train parameters in the model.

• Multilinear singular value decomposition (MSVD)
[59]. Li et al. devised MSVD to integrate explicit and
implicit relations among user, item and criterion. The
approximation tensor is usually obtained by reserving the
largest k-model singular values.

• Multiple linear regressions (MLR) [60]. This method
applies the multiple linear regression model to study the
relationship between a user’s multi-criteria ratings and
his/her overall rating. We utilize the multiple regression
model to predict an individual overall rating.

• Support vector regression (SVR) [11]. This method
trained two support regression models from user- and
item- side respectively and combined these two regression
models to predict the overall ratings.

• Criteria-independent contextual model (CIC) [3].
The multi-criteria ratings are initially estimated by the
context-aware recommendation algorithm and the support
vector regression is applied to predict the overall ratings.

• Deep multi-criteria collaborative filtering (DMCF)
[6]. DMCF is a two-stages based approach which firstly
adopts a neural network to estimate a user’s multi-criteria
ratings and secondly choose another neural network to
predict his/her overall rating.

• Deep Neural Network Matrix Factorization (DNN-
MF) [24]. DNN-MF is a deep learning-based method
proposed for information filtering in multi-criteria rec-
ommender systems. It fuses DNN, MF, and social spider
optimization (SSO) to exploit non-linear interactions be-
tween users in terms of multi-criteria attributes.

• MCAE-FADNN [26] is another approach for multi-
criteria recommendation systems. MCAE-FADNN lever-
ages autoencoders with dropout layers to predict missing
criteria ratings. Subsequently, it builds non-linear interac-
tion between users and items using DNN with optimized
weights attained using the firefly algorithm.

2) Parameter settings: The regularization parameter λ0 for
overall ratings and λα for ratings on criterion α are set to
0.001 and 0.005 after trials, respectively. All parameters are
initialized with a Gaussian distribution (with a mean of 0 and
a standard deviation of 0.01) [61]. For those regression based
methods (MLR and SVR), we employ the BMF method to
predict multi-criteria ratings of the target item and apply those
predicted scores to calculate the overall rating. For the DMCF,
we simply follow the setting of the original article [6]. We set
the size of each hidden layer to (128, 64, 32, 16, 8) to estimate
a user’s multi-criteria ratings, and set the size of the hidden
layers of the high-level MLP to (64, 32, 16, 8) to predict the
overall rating.

B. Results and analysis
1) Relevance of multi-criteria ratings: We first study the

correlation between overall ratings and multi-criteria ratings
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TABLE III
THE RESULT OF LINEAR REGRESSION ANALYSIS.

Dataset Adjusted R-squared F-statistic Prob(F-statistic)
TripAdvisor 0.819 6236 < 0.0001

Yahoo!Movies 0.837 2.998× 104 < 0.0001
BeerAdvocate 0.629 4.064× 104 < 0.0001

before comparing our method with baseline approaches. In
general, the information of the multi-criteria rating is useful
for improving the predictive accuracy only if the overall rating
has a high correlation with the multi-criteria rating. Following
the work in [11], [60], we assume the overall rating has a linear
relation with the multi-criteria rating. Therefore, we employ a
linear regression analysis between the overall rating and the
multi-criteria rating.

In the linear regression model, a user’s overall rating is
regarded as a variable depending on multi-criteria ratings.
Those sub-rates are considered as independent variables. We
assume the overall that rating is a linear combination of multi-
criteria ratings:

r
(0)
ui =

c∑
α=1

bαr
(α)
ui + ϵ. (14)

We compute 3 different metrics to evaluate the correlations
between ratings, namely Adjusted R-squared, F-statistic and
Prob(F-statistic). The Adjusted R-squared is considered as an
unbiased estimator of R-squared, that evaluates the proportion
of the variance in the dependent variable which is predictable
from the independent variables. We use Adjusted R-squared
to assess the goodness-of-fit for the linear regression analysis.
The F-statistic and Prob(F-statistic) test the null hypothesis
that all of the regression coefficients are equal to zero.

The result of the linear regression analysis is given in
Table III. By looking at the values of F-statistic and Prob(F-
statistic), we can see that test results on three datasets are
significant since Prob(F-statistic) < 0.0001. This means that
individual overall ratings have high correlations with their
corresponding multi-criteria ratings, and the information of
the multi-criteria rating can improve the accuracy of the
overall rating prediction. The test on BeerAdvocate dataset
has the smallest Adjusted R-squared value (0.629), which
reveals that BeerAdvocate users’ overall ratings have the
lowest correlations with multi-criteria ratings. In other words,
for the BeerAdvocate dataset, the accuracy improvements of
the overall rating prediction may be subtle.

We further study the convergence of wα in Eq. (9) during
training, presented in Figure 2. Each curve in the Figure
represents the weight of the criterion and x-axis is the iterative
epochs of the gradient descent method. The wα is randomly
initialized with a Gaussian distribution with a mean of zero
and a standard deviation of 0.01. Consequently, the start value
of wα is around zero for different criteria. When the iteration
goes over 100, wα starts to converge. For TripAdvisor dataset,
weights of criteria are close to each other (around 0.15). The
weight of Location criterion is slightly lower than the weight
of remaining criteria. For Yahoo!Movies dataset, weights of
criteria varies, ranging from 0.2 to 0.35. In the BeerAdvocate

dataset, weights of Aroma and Palate criterion are close and
Taste criterion has the highest weight. A potential reason is
that users may be more concerned about the taste when they
choose beers.

0 50 100 150 200
Epochs

0.00

0.05

0.10

0.15

0.20

W
ei

gh
ts

TripAdvisor

Service
Rooms
Sleep Quality
Location
Cleanliness
Value

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Yahoo!Movies

Acting
Direction
Story
Visuals

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

BeerAdvocate

Aroma
Appearance
Palate
Taste

Fig. 2. The convergence of wα.

2) The performance comparisons of different methods: We
show the performance of all models considered on different
models and dataset in Table IV. Among these methods,
UserKNN and BMF are one-step approaches that only employ
overall ratings. MultiUserKNN is an extension of UserKNN
that utilizes both overall ratings and multi-criteria ratings to
compute similarities between user pairs. We can see that the
accuracy of MultiUserKNN is slightly worse than the accuracy
of UserKNN, which means MultiUserKNN is not an effective
way to uncover the information of multi-criteria ratings.

However, not all multi-criteria based approaches outperform
the single-criterion based method BMF, though they exploit
more information. For instance, the error of MLR and SVR
is higher of BMF. These regression based methods initially
predict multi-criteria ratings of the target item. However, this
sub-process also imposes prediction error, which is amplified
in the final stage and leads to poor predictions of overall
ratings. Turning attention to the MAE metric, CIC achieves
lower error than BMF on Yahoo!Movies dataset. However,
CIC performs worse than BMF on remaining datasets. This
implies that the performance of CIC do not generalize well
on different applications. In addition, the deep learning based
methods (e.g., DMCF) achieves worse performance than our
method (CFMind). This is because that the above methods is
not trained end-to-end [62], [63], which amplifies the error in
its sub-process.

Among those methods, CFMind achieves the best per-
formance, as it obtains the lowest error over all baselines.
Although CFMuser and CFMitem take advantage of the
transfer learning and share the latent vector of the user
and item, they do not outperform the independent variant
CFMind. When the target data is sparse, the knowledge
sharing method may be helpful in improving the predictive
accuracy of the target domain [30]. However, in the multi-
criteria recommender system, the overall rating has the same
sparsity with the multi-criteria rating. This means that sharing
the user’(item’) latent vector may dilute the knowledge in the
domain of the overall rating, and therefore it is better to keep
the latent space independent in the multi-criteria recommender
systems.

Although CFMind outperforms BMF on three datasets,
the improvements are various from different datasets. We can
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TABLE IV
THE PERFORMANCE OF RECOMMENDATION APPROACHES. THE STANDARD ERROR IS PRESENTED IN THE BRACKET. BOLD VALUES INDICATE THE BEST

RESULTS.

RMSE MAE
TripAdvisor Yahoo!Movies BeerAdvocate TripAdvisor Yahoo!Movies BeerAdvocate

UserKNN 1.2159(0.0239) 1.2329(0.0696) 0.8444(0.0150) 0.9458(0.0252) 0.9260(0.0716) 0.6559(0.0169)
MultiUserKNN 1.2146(0.0238) 1.2396(0.0715) 0.8441(0.0161) 0.9458(0.0255) 0.9319(0.0729) 0.6572(0.0177)
BMF 0.6820(0.0088) 0.8646(0.0061) 0.5858(0.0009) 0.4032(0.0023) 0.6289(0.0032) 0.4394(0.0001)
MSVD 0.9505(0.0596) 0.8738(0.0046) 0.5960(0.0006) 0.6387(0.0109) 0.6332(0.0030) 0.4473(0.0039)
MLR 0.7475(0.0081) 0.8664(0.0060) 0.5929(0.0002) 0.5255(0.0009) 0.6326(0.0066) 0.4442(0.0006)
SVR 0.7465(0.0086) 0.8671(0.0058) 0.5993(0.0021) 0.5109(0.0038) 0.6248(0.0063) 0.4470(0.0051)
CIC 0.6836(0.0140) 0.8782(0.0185) 0.5914(0.0070) 0.4055(0.0054) 0.6200(0.0055) 0.4429(0.0053)
DMCF 0.8289(0.0101) 0.9139(0.0078) 0.6240(0.0098) 0.5819(0.0028) 0.7012(0.0017) 0.4698(0.0058)
DNN-MF 0.7606(0.0032) 0.8606(0.0008) 0.6077(0.0058) 0.5334(0.0154) 0.6178(0.0019) 0.4483(0.0028)
MCAE-FADNN 0.8301(0.0006) 0.8793(0.0002) 0.6240(0.0098) 0.6031(0.0153) 0.6277(0.0045) 0.4698(0.0006)
CFMuser 0.6492(0.0129) 0.8802(0.0095) 0.5904(0.0019) 0.3965(0.0013) 0.6184(0.0080) 0.4403(0.0001)
CFMitem 0.6549(0.0095) 0.8869(0.0035) 0.5904(0.0017) 0.3898(0.0021) 0.6145(0.0046) 0.4408(0.0008)
CFMind 0.6117(0.0011) 0.8514(0.0063) 0.5833(0.0003) 0.3522(0.0065) 0.6042(0.0020) 0.4360(0.0004)

see that CFMind perform better than BMF on BeerAdvocate
dataset. This is because users’ overall ratings in BeerAdvocate
have the low correlations with their multi-criteria ratings.
According to Eq.(9), our method combines contributions of
overall ratings and multi-criteria ratings in a linear manner,
which leads to a modest performance of our method on
BeerAdvocate dataset.

Overall, our proposed CFMs obtain the best performance
on all datasets, by achieving up to 10.52% and 13.14% lower
RMSE and MAE than the state-of-the-art approach CIC.

50% 60% 70% 80% 90%
Training Size

0.6
0.7
0.8
0.9
1.0

R
M

S
E

TripAdvisor

50% 60% 70% 80% 90%
Training Size

0.84
0.86
0.88
0.90
0.92

Yahoo!Movies

50% 60% 70% 80% 90%
Training Size

0.56
0.58
0.60
0.62
0.64

BeerAdvocate

50% 60% 70% 80% 90%
Training Size

0.3
0.4
0.5
0.6
0.7
0.8

M
A

E

50% 60% 70% 80% 90%
Training Size

0.60
0.62
0.64
0.66
0.68
0.70

BMF MLR SVR CIC CMFind

50% 60% 70% 80% 90%
Training Size

0.42

0.44

0.46

0.48

Fig. 3. The performance of methods w.r.t. different training sizes.

We then do a sign test on the results to show that the
improvements are indeed significant. In the sign test, a z∗

score is computed by z∗ = nA−0.5(nA+nB)√
(nA+nB)/4

, where nA denotes

the number of users that CFMind is better than the baseline
method. nB is the number of users that the baseline method is
superior to our method. Our method and the baseline method
are significantly different when |z∗| > 1.96. Table V shows
the results of the significant analysis. We can see that our
method (CFMind) outperforms baseline methods for most
users. The result of z∗ score also indicates that our method

and baseline methods are significantly different (|z∗| > 1.96).
However, one exception exists, as on BeerAdvocate dataset, the
difference between our method and CIC is not significant. This
is because users’ overall ratings in this dataset have relatively
low correlations with their multi-criteria ratings.
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Fig. 4. The performance of our method with different values of Θ.

C. The impact of sparsity and hyper-parameter

We study the performance of the model when the sparsity
of the dataset varies, as shown in Figure 3. The x-axis is the
proportion of overall ratings in the training set to the total
number of all overall ratings, where the y-axis is the error
metric. In general, CFMind outperforms baseline approaches
when the training size ranges from 50% to 90%, which shows
the superiority of our method. On the BeerAdvocate dataset,
CFMind’s MAE is slightly higher than MAE of CIC when
the training size is 70%.

To evaluate the proposed model against state-of-the-art
baselines in the scenario where users have few ratings, we
conducted experiments on the original dataset, which includes
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TABLE V
THE SIGNIFICANT TEST OF ALGORITHMS.

TripAdvisor Yahoo!Movies BeerAdvocate
nA/(nA + nB) ∗ 100%

RMSE MAE RMSE MAE RMSE MAE
UserKNN 79.88% 77.42% 85.81% 86.83% 80.95% 78.77%
MultiUserKNN 79.82% 77.67% 85.62% 86.46% 79.94% 77.99%
BMF 56.29% 59.03% 55.94% 55.09% 52.70% 53.71%
MSVD 55.99% 59.85% 78.80% 80.46% 57.22% 56.18%
MLR 57.06% 63.09% 68.96% 71.93% 54.00% 55.04%
SVR 54.93% 60.29% 68.02% 71.05% 57.90% 55.23%
CIC 53.52% 56.70% 55.28% 55.84% 50.26% 51.24%
Average 62.50% 64.86% 71.20% 72.52% 61.85% 61.16%
z∗score
UserKNN 23.51 24.18 24.12 22.14 34.33 31.91
MultiUserKNN 23.39 23.94 24.08 22.34 33.21 31.05
BMF 3.87 3.32 5.04 7.24 2.99 4.11
MSVD 18.93 20.02 4.79 7.89 8.01 6.85
MLR 12.44 14.39 5.73 10.61 4.44 5.59
SVR 11.72 13.69 4.00 8.34 8.76 5.81
CIC 3.45 3.82 2.82 5.37 0.29 1.37
Average 13.90 14.77 10.08 11.99 13.15 12.38

TABLE VI
THE PERFORMANCE OF METHODS ON UNFILTERED DATASETS.

TripAdvisor BeerAdvocate
RMSE MAE RMSE MAE

BMF 0.7709 0.4477 0.9811 0.7266
MLR 0.7708 0.5373 0.7916 0.6018
SVR 0.7817 0.5470 1.2216 1.0977
CIC 0.7647 0.3989 0.7836 0.5916
DNN-MF 0.7956 0.5576 0.7947 0.5952
MCAE-FADNN 0.7688 0.5283 0.7870 0.5927
CFMind 0.6852 0.3239 0.6759 0.5119

users with less than 10 ratings. We present the results in
Table VI and excluded Yahoo! Movies dataset since all users
in this dataset had more than 10 ratings. Our experimental
results demonstrate that the proposed CFM model outperforms
the baseline method even when trained on such sparse and
noisy datasets. Specifically, the rating prediction task is more
challenging in the unfiltered datasets due to their sparsity and
noise. Nonetheless, the CFM model has achieved a greater
relative improvement, indicating its superior adaptability to
the sparse data scenario. This can be attributed to its ability
to capture information from multiple aspects, including both
overall and criteria ratings.

TABLE VII
THE TRAINING TIME OF METHODS. THE TRAINING TIME IS MEASURED BY

SECONDS.

TripAdvisor Yahoo!Movies BeerAdvocate
BMF 48.22 193.67 435.21
MSVD 46.27 178.52 423.87
MLR 289.32 774.68 1741.12
SVR 291.45 777.11 1750.99
CIC 344.80 983.69 2222.41
CFMind 83.31 363.12 768.56

Our method adopts a linear method to combine the loss
function of the overall rating and the multi-criteria rating
(see Eq.(10)) and employs a hyper-parameter (Θα) to control
contributions of multi-criteria ratings. We then study the
performance of our method with different values of Θα. For
all criteria, we use the same value of Θ (i.e. Θ1 = Θ2 =

... = Θc). The result is shown in Figure 4. We can see
that our method achieves the best predictive accuracy when
Θ is around 1 for TripAdvisor and BeerAdvocate datasets.
This indicates that individual multi-criteria rating has almost
equal contribution with the corresponding overall rating. For
the Yahoo!Movies dataset, the optimal Θ is around 5.

D. The complexity analysis

Finally, we evaluate the training time of different mod-
els. All these methods are implemented by an open-source
machine learning framework TensorFlow. We use the same
machine (Intel I7 6800K CPU) to perform the training process.
The results are shown in Table VII where the training time is
measured by seconds. Among these methods, MSVD requires
the least training time. Although MSVD is faster than the
iterative optimization methods (i.e. SGD), it is difficult to
apply such method to the large-scale dataset since the time
complexity of computing the singular value is cubic. Although
our method consumes more training time than BMF and
MSVD, the training time of our method is far lower than of
MLR, SVR and CIC, which requires considerable amount of
time to predict multi-criteria ratings of the target item. Those
results show that our proposed en-to-end method can speed
up training compared to other two-stages based approaches.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an end-to-end collective factor
model (CFM) for multi-criteria recommender systems. Our
method integrates the loss functions of overall ratings and
multi-criteria ratings linearly, allowing us to train the collective
factor model using both types of ratings. Our theoretical analy-
sis shows that the proposed method can transfer the knowledge
of each criterion to the domain of overall ratings, thereby
reducing the dependency on sub-processes. Our experiments
on three benchmark datasets demonstrate that our method out-
performs eight different baselines, achieving up to 10.52% and
13.14% lower RMSE and MAE, respectively, compared to the
state-of-the-art approach of CIC. Additionally, our approach is
more efficient than traditional two-stage approaches, resulting
in considerable time savings during training.

Although the proposed CFM predicts ratings based on the
BMF model and models the overall and sub-ratings with linear
weights, making it relatively simple, general, and easy to
train, it overlooks non-linear relationships. This may limit
the prediction performance of the proposed CFM. Future
work will focus on exploring deep learning-based structures to
improve the model’s ability to capture non-linear relationships,
including the relationships between users and items, and
between overall ratings and sub-ratings.
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