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ABSTRACT
Recent years, Pre-trained Language models (PLMs) have swept into
various fields of artificial intelligence and achieved great success.
However, most PLMs, such as T5 and GPT3, have a huge amount of
parameters, fine-tuning them is often expensive and time consum-
ing, and storing them takes up a lot of space. Therefore, it is neces-
sary to adopt a parameter-efficient approach to reduce parameters
of PLMs in fine-tuning without compromising their performance in
downstream tasks. In this paper, we design a novel adapter which
only acts on self-attention outputs in PLMs. This adapter adopts
element-wise linear transformation using Hadamard product, hence
named as Hadamard adapter, requires the fewest parameters com-
pared to previous parameter-efficient adapters. In addition, we also
summarize some tuning patterns for Hadamard adapter shared by
various downstream tasks, expecting to provide some guidance for
further parameter reduction with shared adapters in future studies.
The experiments conducted on the widely-used GLUE benchmark
with several SOTA PLMs prove that the Hadamard adapter achieves
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competitive performance with only 0.033% parameters compared
with full fine-tuning, and it has the fewest parameters compared
with other adapters. Moreover, we further find that there is also
some redundant layers in the Hadamard adapter which can be
removed to achieve more parameter efficiency with only 0.022%
parameters.
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1 INTRODUCTION
Recent years, Pre-trained Language models (PLMs) have swept into
various fields of artificial intelligence and achieved great success.
The mainstream paradigm for adapting PLMs to downstream tasks
is fine-tuning. As most PLMs, such as T5 [31], GPT3 [4], have a
large amount of parameters, fine-tuning them is often expensive
and time consuming, and storing them takes up a lot of space. It has
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been revealed that there are a lot of redundant parameters in the
process of fine-tuning [5, 7]. Thus, it is necessary to greatly reduce
the scale of parameters in fine-tuning without compromising PLMs’
performance in downstream tasks.

Previous parameter-efficient fine-tuning of PLMs mainly con-
tains three categories of methods, i.e., adapter tuning, prefix tuning,
and prompt tuning. Adapter tuning [15] is to inject a small neural
network module into each or some layers of the PLMs. During
fine-tuning, only the parameters of this small module need to be
learned. It has promising performance in NLP, which achieves
comparable performance with fine-tuning while adding no more
than 4% task-specific parameters [15, 21]. Prefix tuning [20] and
prompt tuning [18] preset additional adjustable prefix tokens in
the input or hidden layer, and only these soft prompts are trained
during the fine-tuning of downstream tasks. In addition to the
above three parameter-efficient fine-tuning ways, the existing ef-
forts also works on model compression [5], including knowledge
distillation [2, 14], which transfers the knowledge learned by large
models to small models, such that small models can have the gener-
alization ability of large models; quantization [9, 39], which reduces
the accuracy of large models within the acceptable range; prun-
ing [11, 33], which removes less useful connections in the model;
and structure optimization, such as matrix decomposition [35], pa-
rameter sharing [36], etc. However, although the current endeavors
achieve competitive performance in downstream tasks with much
fewer parameters, we believe there is still room for improvement
in parametric efficiency.

It’s well-known that the attention mechanism, especially self-
atten-tion, is one of the core modules that enable PLMs achieve
superior performance in various downstream tasks [37]. Thus, a
possible way to significantly reduce the scale of parameters for
fine-tuning might be designing an adapter to work with the self-
attention module in PLMs. We also find related research on adapter
tuning that injects adapters into the self-attention layer, such as
IA3 [22]. There are three questions need to be answered when
designing the adapter.Q1.Where should the adapter that acts on self-
attention outputs be injected into the PLMs? Q2. What is the suitable
form of the adapter that satisfies both competitive performance and
parameter-efficiency? Q3. What other essential parameters should
not be frozen in adapter tuning? To answer these questions, we
conduct the following empirical studies: i) Analyzing the changes
of self-attention outputs before and after full fine-tuning to verify
the importance of self-attention which is therefore necessary to
inject the adapter; ii) Comparing the difference among all fitting
functions to select the suitable form of the adapter; iii) Analyzing
the gradients of PLMs after fine-tuning on downstream tasks to
select out the modules of great importance which should to be
trained in the adapter tuning.

According to the empirical analysis, we propose a novel adapter
tuning method as follows: We first learn the classification module to
output prediction results on a given downstream task, without up-
dating the PLMs’ other parameters. Since the classification module
is a linear model, this step requires light-weight computation cost.
Then we design an adapter and inject it right after the multi-head
self-attention outputs of PLMs. Particularly, we freeze all parame-
ters except parameters in the designed adapter and the subsequent
normalization module for continuous fine-tuning. As there are

usually multiple layers with the same architecture in PLMs, e.g.,
BERT [8] model of base version has 12 layers, we inject such an
adapter module in each layer of PLMs. In designing the adapter, we
only adopt element-wise linear transformation, rather than high-
order ones, as the computational logic for the adapter. Specifically,
the adapter includes a weight vector and a bias vector which have
the same dimension as the output of the multi-head self-attention
module. The multi-head self-attention output is multiplied by the
weight vector of the adapter using the element-wise product (also
called the Hadamard product), then added by the corresponding
bias vector to obtain new self-attention outputs. Thus, we name
the designed adapter as Hadamard adapter.

We carry out experiments on GLUE benchmark, including eight
tasks. The experimental results demonstrate that the proposed
Hadamard adapter achieves competitive performance with much
fewer parameters than the existing fine-tuning methods. In addi-
tion, we take the learned parameter values of the Hadamard adapter
as representations of downstream tasks. Through further analysis,
we summarize some valuable tuning patterns for Hadamard adapter
shared by various downstream tasks, which provide valuable guid-
ance for further parameter reduction using shared adapters in future
research.

To summarize, our contributions in this paper are threefold:

• Based on comprehensive empirical analysis, we designHadamard
adapter, which acts on self-attention outputs in PLMs with
element-wise linear transformation. We also design an ex-
treme parameter-efficient adapter tuning method based on
the Hadamard adapter.

• We conduct extensive comparative experiments with several
mainstream PLMs. The experimental results show that the
proposed Hadamard adapter achieves the highest parametric
efficiency in the fine-tuning history, and has competitive
performance with full fine-tuning for various downstream
tasks.

• We summarize some valuable tuning patterns for Hadamard
adapter shared by various downstream tasks, which provide
valuable guidance for further parameter reduction using
shared adapters in future research.

2 EMPIRICAL ANALYSIS
To guide the design of our adapter tuning method, we conduct
empirical studies that target at answering the three key questions
as listed in the Introduction. In the following of this section, we
first analyze the changes of self-attention outputs before and after
full fine-tuning (for answering Q1), then we compare the differ-
ence among all fitting functions to select the suitable form of the
Hadamard adapter (for answering Q2). Finally, we analyze the gra-
dients of PLMs after fine-tuning on downstream tasks to select out
the modules of great importance that would not be frozen in the
adapter tuning (for answering Q3).

2.1 THE CHANGES OF SELF-ATTENTION OUTPUTS
We employ eight tasks in the GLUE benchmark to conduct the first
analysis of how PLM’s self-attention output changes before and
after fine-tuning. For PLM, we adopt Roberta-large model, which
has 24 hidden layers and outputs 1024-dimensional tensors in the
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encoder, as an example to make analysis. Specifically, in order to
compare the changes of self-attention outputs in each layer among
all tasks, we adopt the norm of self-attention outputs instead of
the original self-attention outputs. We analyze the distribution of
the norm of self-attention outputs among all tasks before and after
fine-tuning, and the changes during fine-tuning on each layer as
shown in Fig. 1. The process is shown as the following equations:

∥𝑨𝒃 ∥2 =
√︃
𝜆𝑚𝑎𝑥 (𝑨𝑇

𝒃
𝑨𝒃 ), ∥𝑨𝒂 ∥2 =

√︃
𝜆𝑚𝑎𝑥 (𝑨𝑇

𝒂𝑨𝒂) (1)

Δ =
∥𝑨𝒂 ∥2 − ∥𝑨𝒃 ∥2

∥𝑨𝒃 ∥2
(2)

where ∥𝑨𝒃 ∥2 and ∥𝑨𝒃 ∥2 represent the norm of self-attention out-
puts among all tasks before and after fine-tuning in a hidden layer,
and 𝜆𝑚𝑎𝑥 (𝑨𝑇

𝒃
𝑨𝒃 ) is the eigenvalue of the matrix ∥𝑨𝒃 ∥2.

One box in Fig. 1(a)(b) and Fig. 1(c) represents the distribution of
the norm of self-attention outputs and the corresponding changes
in the layer, respectively. As can be observed in Fig. 1, the norm
of self-attention outputs of all tasks significantly increase from
an average of 60 to an average of 100 after fine-tuning, especially
in the middle and back layer (Fig 1(a)(b)). After the fifteen layers,
the changes become more significant as the number of layers in-
creases, reaching the greatest changes at the last layer (Fig 1(c)).
The above observations indicate that self-attention outputs change
significantly during the fine-tuning process, which inspire us with
the answer to Q1 as follows: It is proper to inject an adapter right
after the self-attention outputs to achieve similar performance gains
with fine-tuning while updating much fewer parameters.

2.2 FITTING FULL FINE-TUNING
Wedesign fitting functions for self-attention outputs tomake adapter
tuning, which aims at letting the values of self-attention outputs
approximate those in full fine-tuning of PLMs. We first optimize
the parameters in the classifier modules. Next, we reload them and
train different fitting functions, including linear function, quadratic
function and higher order function (i.e. cubic function), respectively,
to obtain new self-attention outputs. After that, we calculate the
average value of each token in a sequence through dividing by the
hidden size of the PLM in the new self-attention outputs as shown
in Fig. 2(a). The process is shown in the following equations:

𝑎′𝑗 =
1
𝐻

𝐻∑︁
𝑖=1

𝑎′𝑖 𝑗 (3)

where 𝐻 represents the hidden size of a PLM. 𝑎′
𝑖 𝑗
is the value of the

𝑖𝑡ℎ dimension of the 𝑗𝑡ℎ token in the new self-attention outputs in
a hidden layer based on a task. 𝑎′

𝑗
is the average value of each token

in a sequence of a task. More detailed, we then calculate the average
value of each sequence through dividing by sequence length in the
new self-attention outputs. In this way, we obtain a characteristic
value for each task which represents its respective average self-
attention outputs. We analyze the distribution of the characteristic
value among all tasks in each layer as shown in Fig. 2(b) with the
process shown in the following equations:

𝑎′ =
1
𝐿

𝐿∑︁
𝑗=1

𝑎′𝑗 (4)

where 𝐿 represents the sequence length fed for the PLM. 𝑎′ is
the characteristic value of a task. We also analyze the average
characteristic values of all tasks in each layer as shown in Fig. 2(c).

As shown in Fig. 2(a), dots of the same color represents the av-
erage value of each token in a sequence of all downstream tasks
corresponding to one of the three fitting functions and fine-tuning.
The dots of four settings are covered by each other, which also
proves that fitting functions of different orders are similar in ap-
proximating the performance of fine-tuning. As shown in Fig. 2(b),
one box represents the distribution of characteristic values among
all downstream tasks in a layer. Median, quartile ranges which cor-
respond to the characteristic value distribution of different fitting
functions and fine-tuning are similar in each hidden layer. When
we analyze the average characteristic value of all tasks, trends of
linear function, quadratic function and higher order function are
still similar, but slightly different from that of fine-tuning (Fig 2(c)).
One dot represents the average characteristic values of all down-
stream tasks in a layer. As the order increases, the values between
the fitting function and fine-tuning are closer, but the difference in
distance can be ignored compared with the increase in the number
of parameters. Therefore, we have answer to Q2 as follows: A linear
function is qualified enough to act on self-attention outputs to fit the
performance of fine-tuning.

2.3 GRADIENT ANALYSIS
We output the gradient and unit gradient of the top five layers in the
first and last epoch during training, respectively, of a PLM (such as
BERT-base model). Two representative datasets MRPC (similarity
and paraphrase task, 3.7k) and SST-2 (single-sentence classification,
67k) from the GLUE benchmark are selected for analysis, and the
results are shown in Table 1.

From the results of the gradients, we speculate that the classifier
weights, embedding weights and intermediate weights of all tasks
are more important in fine-tuning than the other modules because
their gradients contribute the most in the first and last epochs.
However, we find that some modules which contribute most during
the fine-tuning have a large number of parameters, such as the
intermediate module, which accounted for nearly half of all param-
eters. If we still fine-tune them, a lot of redundant computation is
inevitable. We further analyze the results of unit gradient, which is
the gradient divided by the number of parameters, and the results
show that the classifier weights, embedded weights, and normalized
weights are more important because their unit gradients contribute
the most in the first and last epochs.

Therefore, we have answer to Q3 as follows: We select out the
classifier and the normalization as trainable modules in the adapter
tuning.We also make a theoretical analysis of the selection of these
parameters as follows: i) The classifier makes prediction in the
downstream tasks and directly affects the performance of tasks. ii)
Normalization is to limit the data within a certain range and unify
the distribution of each batch of training data. Since the input data
distribution of each batch of the network is constantly changing,
the changes of training pattern without normalization will make it
difficult for the network to find a balance point, thus affecting the
convergence of the network.
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Figure 1: The distribution of the norm of the self-attention outputs among all tasks before (a) and after fine-tuning (b), and the
corresponding changes (c) in each layer.
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Figure 2: The average values of each token in a sequence of all tasks (a), the characteristic value distribution among all tasks
(b), and the average characteristic values of all tasks (c) based on full fine-tuning and different fitting functions, respectively, in
each hidden layer.

Table 1: The gradient and unit gradient of the top five layers (in descending order) in the first and last epoch, respectively. We adopt BERT-base
model, MRPC and SST-2 dataset to show results and make analysis.

Task Gradient in first epoch Unit gradient in first epoch Gradient in last epoch Unit gradient in last epoch

MRPC

classifier.weight
embeddings.token_type_embeddings.weight
encoder.layer.4.intermediate.dense.weight
encoder.layer.5.intermediate.dense.weight
encoder.layer.4.attention.self.value.weight

classifier.bias
classifier.weight
embeddings.token_type_embeddings.weight
encoder.layer.4.output.LayerNorm.bias
encoder.layer.8.output.LayerNorm.weight

classifier.weight
embeddings.token_type_embeddings.weight
pooler.dense.weight
encoder.layer.4.intermediate.dense.weight
encoder.layer.7.intermediate.dense.weight

classifier.bias
classifier.weight
embeddings.token_type_embeddings.weight
encoder.layer.4.output.LayerNorm.bias
encoder.layer.3.output.LayerNorm.bias

SST-2

embeddings.token_type_embeddings.weight
embeddings.position_embeddings.weight
embeddings.word_embeddings.weight
encoder.layer.6.intermediate.dense.weight
encoder.layer.1.intermediate.dense.weight

classifier.bias
embeddings.token_type_embeddings.weight
classifier.weight
embeddings.LayerNorm.bias
encoder.layer.3.output.LayerNorm.weight

classifier.weight
embeddings.token_type_embeddings.weight
embeddings.position_embeddings.weight
embeddings.word_embeddings.weight
encoder.layer.8.intermediate.dense.weight

classifier.bias
classifier.weight
embeddings.token_type_embeddings.weight
encoder.layer.7.output.LayerNorm.weight
encoder.layer.7.output.LayerNorm.bias

3 METHODOLOGY
In this section, we first introduce the details of Hadamard adapter,
and then clarify the process of the proposed parameter-efficient
adapter tuning method in solving downstream tasks.
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Figure 3: The framework of the Hadamard adapter (A), and
the process of the parameter-efficient adapter tuningmethod,
including two parts: (a) Train the classifier; (b) Inject the
Hadamard adapter for self-attention outputs and unfreeze
the normalization module.

3.1 THE HADAMARD ADAPTER
The framework of the Hadamard adapter is shown in Fig. 3(A). It is
equivalent to a linear transformation based on feature dimension
as shown in the following equation:

𝐴𝑑𝑎𝑝 : 𝑨′
𝒊𝒋 =𝑾𝒋 ∗𝑨𝒊𝒋 + 𝒃𝒋 (5)

Different feature dimensions correspond to different linear trans-
formation parameters, but different positions (i.e. each token in
a sequence) share the same parameters. We put such an adapter
in each layer of the PLMs. Adapters of different layers have dif-
ferent parameters. Based on the empirical analysis in Sec. 2.1, we
put this adapter right after the self-attention outputs. Specifically,
we multiply the weight vector𝑾𝒋 of the Hadamard adapter to the
self-attention outputs 𝑨𝒊𝒋 , and then add the bias vector 𝒃𝒋 to the
product to obtain new self-attention outputs𝑨′

𝒊𝒋 . The weight vector
and the bias vector in the Hadamard adapter are both 1-d vectors
of the same shape as the hidden size of the PLM, such as 768 for
the base version or 1024 for the large version for BERT model. The
number of the Hadamard adapter in a PLM is also the same as the
number of PLMs’ layers, such as 12 for the base version and 24 for
the large version in BERT model. All weight vectors are initialized
as 1.0 and all bias vectors are initialized as 0.0. The initial value
is equivalent to not adding any adapter. The approximate number
of parameters of this adapter is from 30,000 to 100,000 according
to different size of PLMs and 3,000 to 4,000 in each layer of PLMs,
which is only 0.03% of the full fine-tuning.

3.2 THE ADAPTER TUNING METHOD
The parameter-efficient adapter tuning method is to inject adapters
to PLMs and make continuous fine-tuning as shown in Fig. 3(a)(b).
Specifically, we first only unfreeze and train the pooling and classi-
fier modules on downstream tasks. Next, we inject the Hadamard
adapter right after self-attention outputs. After that, we reload
the trained pooling and classifier layers, and only fine-tune the
Hadamard adapter and the normalization module in each layer.
Although the above-mentioned two-stage training process can be
time-consuming and computationally expensive, the performance

is better than joint training in our experiments. We have analyze the
possible reason in the paper that the proposed Hadamard Adapter
has not been optimized in the pre-training stage which will affect
the effect of classifier layer. We also find other research, such as
LP-FT [17], demonstrating the better performance of two-stage
training.

Train the classifier module. For each given downstream task,
we first learn only the classifier module on the training dataset,
including the pooling and linear output layers. While learning the
classifier module, the other parameters of the PLMs are frozen.
Since all layers except the classifier module do not participate in
backward propagation and gradient update, they can be shared by
different tasks. In addition, the computational cost of this step is
very small compared to the overall cost of full fine-tuning.

Inject the Hadamard adapter and unfreeze the normaliza-
tionmodule. Secondly, we inject the Hadamard adapter right after
the self-attention outputs. Multi-head self-attention is an important
mechanism in PLMs, which first obtains representation of queries
𝑄 , keys 𝐾 and values 𝑉 , and then makes scaled dot-product for
ℎ𝑒𝑎𝑑𝑠 = 16 times to obtain self-attention score of each attention
head. Outputs of all attention heads are finally concatenated to
obtain self-attention output 𝐴𝑖 . Based on multi-head self-attention,
we first transform the 3-D dimensional self-attention outputs into
2-D dimensional matrices, that is, making the first and second di-
mension flatten. Next, we input the 2-D dimensional self-attention
outputs into the Hadamard adapter and transform the self-attention
outputs into 3-D dimensional matrix 𝐴′

𝑖
. The process is as follows:

𝑄𝑖
𝑙
= 𝑄𝑾

𝑸
𝒍
, 𝐾𝑖

𝑡 = 𝐾𝑾
𝑲
𝒍 ,𝑉

𝑖
𝑡 = 𝑉𝑾𝑽

𝒍 , 𝐴𝑖
𝑙
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝑄𝑖
𝑙
𝐾𝑖
𝑙

𝑇√︁
𝑑𝑘

)𝑉 𝑖
𝑙

(6)

𝐴𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐴𝑖1, · · · , 𝐴
𝑖
𝑇 ), 𝐴′

𝑖 = 𝐴𝑑𝑎𝑝 (𝐴𝑖 ) (7)

After that, We reload the parameters of the trained classifier module
and only unfreeze the normalization module besides the Hadamard
adapter. Based on the empirical analysis in Sec. 2.3, we argue that
the normalization module is very important to improve the accu-
racy of downstream tasks. The reason is that the value range of
the self-attention outputs changes after being transformed with
the Hadamard adapter. Obviously, it is necessary to relearn the
parameters of the normalized module and make them adapt to
the value distribution of the new self-attention outputs in order to
achieve better results. In order to further scale the parameter size
and reach the limit of parameter efficiency, we only unfreeze the
normalization module right after the intermediate outputs rather
than unfreeze that right after the self-attention output.

4 EXPERIMENT
This section reports the experiments conducted on GLUE bench-
mark in validating the effectiveness of the proposed Hadamard
adapter on different SOTA PLMs, as well as comparing the perfor-
mance with other parameter-efficient methods.

4.1 EXPERIMENTAL SETUP
The experiments are carried out on Tesla V100 GPUs with Pytorch
in Python. Similar with previous work [6, 8, 13, 19, 26], the batch
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size is set to 16 or 32, and the sequence length is set to 128. We
maintain the hyper parameters such as 0.01 for weight decay, 0.9
for 𝛽1, and 0.999 for 𝛽2, etc. We set the learning rate from 2e-03 to
4e-03 in training the classifier module, from 2e-05 to 4e-05 in full
fine-tuning, and from 1e-03 to 9e-03 in training with the Hadamard
adapter to obtain the best performance in each training setting. All
tasks are training for 20 epochs with each PLM.

Datasets and Baselines. We adopt GLUE benchmark [38], in-
cluding eight tasks from different domains, as the datasets. They
are divided into single-sentence classification (CoLA, SST-2), simi-
larity and paraphrase (MRPC, STS-B, QQP), and inference (MNLI,
QNLI, RTE). We ignore the WNLI dataset whose data amount is too
small. Same as the previous research [3, 16] on GLUE benchmark,
we also adopt Matthews correlation coefficient 1 and Pearson co-
efficient 2 to evaluate the performance on the CoLA dataset and
STS-B dataset, respectively, and use accuracy for other datasets.
We carry out our experiments on several SOTA PLMs, including
BERT [8], RoBERTa [26], BART [19], DeBERTa [13], and ELEC-
TRA [6]. Moreover, we use powerful parameter-efficient adapters
shown in Table 3 as baselines to compare the parameter amount
and performance on GLUE benchmark.

4.2 MAIN RESULTS
We first report the performance of the classifier, Hadamard adapter
and full fine-tuning in GLUE benchmark based on several SOTA
PLMs in Table 2, where the results all come from our own ma-
chines, which represent only fine-tuning the classifier module, the
proposed adapter tuning method, and full fine-tuning, respectively.
We find that only training the classifier module achieves 77.5% in
performance compared with that of the corresponding full fine-
tuning averagely in selected PLMs and tasks. It represents that the
classifier module is important for solving downstream tasks, so it
is necessary to be fine-tuned alone. Next, we reload the trained
classifier module, inject the Hadamard adapter for self-attention
outputs, and only unfreeze the normalization module. The perfor-
mance increase a large degree, which achieves 99.4% compared with
that of full fine-tuning averagely in selected PLMs and tasks. Some
results are even better than the corresponding full fine-tuning, such
as the MPRC dataset with the BERT-base model. It represent that
the Hadamard adapter has a stunning effect which has competi-
tive performance and achieve extreme parameter efficiency (0.033%
parameters of full fine-tuning).

We also compare the performance between the proposed adapter
tuningmethodwithHadamard adapter and other parameter-efficient
baselines as shown in Table 3, where baselines’ results are replicated
from their corresponding published papers. As can be observed,
there is not much difference in performance, but the Hadamard
adapter uses the fewest amount of parameters. This comparison
results prove that the Hadamard adapter could uses the fewest pa-
rameters to achieve competitive performance with full fine-tuning
and the existing parameter-efficient tuning methods.

1https://en.wikipedia.org/wiki/Phi_coefficient
2https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Figure 4: The influence of different number of unfreezing
layers of the Hadamard adapter on the performance of the
Hadamard adapter with model of base version (a) and large
version (b).

4.3 ABLATION STUDY
In this part, we carry out ablation study to clarify the effect of
each module in the Hadamard adapter as shown in Table 4, as well
as the influence of different number of unfreezing layers to the
performance as shown in Fig. 4.

The effect of each module. The results for the effect of each
module are shown in Table 4. We first unfreeze any one module of
the adapter tuning method (see row 2-5). The results represent that
the bias vectors in the Hadamard adapter and the normalization
module contribute more than the weight vectors (see row 2-5). We
also unfreeze the normalization module (those right after interme-
diate outputs, short as normalization module) and attention-based
normalizationmodule (those right after self-attention outputs, short
as attention-based normalization module), respectively. We find
that the coarse-grained normalization modules (i.e. normalization
module) are more necessary than the fine-grained normalization
modules (i.e. attention-based normalization module) (see row 4-5).
Next, we unfreeze any two modules of the adapter tuning method
(see row 6-10). The results represent that the most two effective
modules, i.e., bias vectors in the Hadamard adapter and the nor-
malization module, also achieve the best performance after being
unfrozen simultaneously. After that, we unfreeze three or four mod-
ules of the adapter tuning method (see row 11-13). Compared with
the final three modules, we observe that when we add the attention-
based normalization module, the performance decreases a little
bit. It represents that some parameters are not valuable enough to
improve PLMs’ performance in the downstream tasks.

The effect of the number of unfreezing layers. The results
for the number of unfreezing layers of the Hadamard adapter on
downstream tasks are shown in Table 5. We select two tasks to visu-
alize the trend as shown in Fig. 4. We find that as we unfreeze more
layers, the performance increase consistently. And they achieve
satisfying performance when we unfreeze over a half of all layers
(8 for models of base version and 16 for those of large version).
The experiment inspires us that parameters in some layers of the
Hadamard adapter are still redundant which can be removed to
achieve more parameter-efficient with 0.022% paramters, but this
conjecture need to be validated with more datasets and PLMs.

5 EXPLORATORY ANALYSIS
To get deeper understanding on the tuning results and provide guid-
ance for better applying Hadamard adapter to various downstream
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Table 2: Performance of training classifier module, adapter tuning and full fine-tuning in GLUE benchmark based on several SOTA PLMs.

PLMs Training type MRPC CoLA MNLI QNLI QQP RTE SST-2 STS-B Average

BERT-base
Classifier 71.8 37.0 54.4 70.6 79.3 57.4 87.4 60.3 64.8

Hadamard adapter 90.2 58.4 80.4 89.7 85.9 71.9 92.4 88.5 82.2
Full fine-tuning 89.4 56.5 83.9 91.3 87.5 64.6 93.0 88.6 81.9

BERT-large
Classifier 72.2 37.9 61.7 71.8 79.8 58.1 89.7 61.9 66.6

Hadamard adapter 91.3 62.7 83.6 91.1 87.2 73.1 93.1 90.0 84.0
Full fine-tuning 90.2 62.8 85.6 92.1 88.5 71.9 93.1 90.1 84.3

RoBERTa-base
Classifier 73.1 44.4 59.3 70.9 75.4 58.5 83.6 61.9 65.9

Hadamard adapter 92.1 64.3 85.5 91.6 87.7 80.7 93.9 90.1 85.7
Full fine-tuning 91.9 64.4 86.7 92.8 89.0 78.0 94.7 91.1 86.1

RoBERTa-large
Classifier 72.8 45.9 62.0 70.6 77.3 58.8 88.4 62.4 67.3

Hadamard adapter 92.5 67.8 89.5 95.1 90.3 85.9 96.1 91.9 88.6
Full fine-tuning 92.7 65.9 91.0 94.5 89.7 86.3 96.2 91.7 88.5

BART-base
Classifier 71.5 43.7 60.1 70.0 76.1 56.9 87.3 61.2 65.9

Hadamard adapter 86.2 61.7 85.5 92.8 86.8 76.5 94.1 89.4 84.1
Full fine-tuning 87.1 62.0 87.8 93.9 88.3 77.7 95.0 91.2 85.4

BART-large
Classifier 72.3 44.3 61.8 71.4 78.0 58.4 88.9 61.8 67.1

Hadamard adapter 88.1 65.0 87.4 94.0 89.0 82.3 95.7 91.3 86.6
Full fine-tuning 88.2 63.4 88.0 95.5 90.1 79.3 95.9 91.9 86.5

DeBERTa-base
Classifier 72.2 45.2 62.1 70.3 76.6 58.8 87.8 63.5 67.1

Hadamard adapter 89.0 65.8 90.1 94.7 89.2 85.4 94.4 92.4 87.6
Full fine-tuning 91.3 66.2 91.2 96.1 90.2 87.4 96.1 93.0 88.9

DeBERTa-large
Classifier 73.5 46.3 63.9 72.3 77.9 60.2 89.1 64.1 68.4

Hadamard adapter 90.4 67.3 92.4 95.9 89.8 86.7 96.8 93.0 89.0
Full fine-tuning 92.5 68.0 93.3 96.9 90.5 88.3 97.1 93.5 90.0

ELECTRA-base
Classifier 72.9 47.3 63.3 71.3 76.6 60.2 89.5 65.0 68.3

Hadamard adapter 89.4 68.2 91.2 96.1 87.7 85.6 96.2 93.5 88.5
Full fine-tuning 90.1 69.0 92.9 96.4 88.5 86.3 96.9 93.7 89.2

ELECTRA-large
Classifier 74.0 47.1 64.8 72.9 78.3 61.2 90.3 66.8 69.4

Hadamard adapter 92.0 68.5 92.9 96.1 89.9 87.2 97.1 94.2 89.7
Full fine-tuning 93.0 69.3 93.9 96.4 91.4 88.7 97.1 94.9 90.6

Table 3: Comparison between tuning with Hadamard adapter and other adapters in GLUE benchmark in several SOTA PLMs.

PLMs Adapter Parameters MRPC CoLA MNLI QNLI QQP RTE SST-2 STS-B Average

BERT-base Hadamard adapter 0.03%(↓ 0.06%) 90.2 58.4 80.4 89.7 85.9 71.9 92.4 88.5 82.2(↓ 0.2)
BitFit [3] 0.09% 90.4 58.8 81.8 90.2 84.0 72.3 92.1 89.2 82.4

BERT-large

Hadamard adapter 0.03%(↓ 0.05%) 91.3 62.7 83.6 91.1 87.2 73.1 93.1 90.0 84.0(↓ 0.2)
BitFit 0.08% 91.7 63.6 84.6 91.4 85.4 73.2 93.2 90.3 84.2

Adapters (8-256) [15] 14.44% 89.5 59.5 85.0 90.7 71.8 71.5 94.0 86.9 80.0
Adapters (64) [15] 13.33% 89.6 56.9 85.0 91.4 71.8 68.8 94.2 87.3 79.6

RoBERTa-base

Hadamard adapter 0.03%(↓ 0.21%) 92.1 64.3 85.5 91.6 87.7 80.7 93.9 90.1 85.7(↓ 1.5)
BitFit 0.08% 92.7 62.0 84.7 91.8 84.0 81.5 93.7 90.8 85.2

Adpt𝐷 [32] 0.24% 88.5 60.8 87.1 93.1 90.2 71.5 94.2 89.7 84.4
Adpt𝐷 0.72% 88.4 62.6 87.3 93.0 90.6 75.9 94.7 90.3 85.4

LoRA [16] 0.24% 89.7 63.4 87.5 93.3 90.8 86.6 95.1 91.5 87.2

RoBERTa-large

Hadamard adapter 0.03%(↓ 0.2%) 92.5 67.8 89.5 95.1 90.3 85.9 96.1 91.9 88.6(-)
Adpt𝑃 [29] 0.85% 90.2 68.3 90.2 94.8 91.9 83.8 96.1 92.1 88.4

Adpt𝑃 0.23% 89.7 67.8 90.5 94.8 91.7 80.1 96.6 91.9 87.9
Adpt𝐻 [15] 1.70% 88.7 66.5 89.9 94.7 92.1 83.4 89.9 91.0 87.8

Adpt𝐻 0.23% 87.7 66.3 90.3 94.7 91.5 72.9 90.3 91.5 86.4
LoRA 0.23% 90.2 68.2 90.6 94.8 91.6 85.2 90.6 92.3 88.6

RoBERTa-AT [25] 0.85% 92.9 67.4 90.4 94.7 88.5 83.4 96.3 - 87.7
RoBERTa-WARP [25] 0.28% 91.2 60.6 88.2 93.5 84.5 86.3 96.0 - 85.8
RoBERTa-YT [25] 4.60% 85.0 54.4 83.1 88.2 87.4 81.9 94.5 - 82.1

BART-large
Hadamard adapter 0.02%(↓ 7.71%) 88.1 65.0 87.4 94.0 89.0 82.3 95.7 - 86.6(↑ 9.7)
BARTen-FbT [25] 8.52% 76.0 42.1 81.9 88.4 86.7 60.6 93.2 - 75.6
BARTen-YT [25] 7.73% 79.2 44.4 82.3 88.2 85.5 62.8 94.4 - 76.9

tasks, we would like to visualize and analyze each module in the
Hadamard adapter of each layer among different downstream tasks
as shown in Fig 5.

The overall analysis aims to answer the following three ques-
tions: i) For various downstream tasks, which layer of the adapter
has the greater weight and bias variation? (Note that small variation
presents the consistency among the learned adapters on different
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Table 4: The effect of each module in the Hadamard adapter on other down-
stream tasks based on BERT-base model. W: Weight, B: Bias, N: Norm, A:
Att-Norm.

Module MRPC SST-2 CoLA QNLI QQP MNLI RTE STS-B

W 73.1 88.7 55.0 84.8 82.4 77.6 67.3 84.7
B 81.0 91.1 56.9 88.0 84.9 79.6 68.7 86.0
N 80.2 90.8 56.6 87.5 84.4 79.3 68.4 85.7
A 79.6 90.5 56.5 87.3 84.1 79.0 68.2 85.5

W+A 80.9 91.0 56.8 88.1 84.7 79.5 68.8 86.2
W+N 81.9 91.3 57.2 88.3 85.0 79.6 69.0 86.3
B+A 81.7 91.4 57.1 88.4 85.0 79.7 69.1 86.5
B+N 82.1 91.7 57.2 88.6 85.2 79.8 69.3 86.7
W+B 78.2 90.0 56.0 86.8 83.6 78.5 67.8 85.0

W+B+N+A 82.6 92.0 57.3 88.9 85.4 80.0 69.8 87.2
W+B+A 82.8 92.1 57.8 89.1 85.2 79.8 70.0 87.9

(Ours) 83.7 92.4 58.4 89.7 85.9 80.4 71.9 88.5

downstream tasks.) ii) What is the difference between normalized
module distribution under adapter tuning and full fine-tuning for
various downstream tasks? and iii) What are the commonalities of
weight and bias in adapter between different downstream tasks?
Here we take RoBERTa-large model as an example to conduct the
analysis, and the other PLMs are observed to have similar conclu-
sions.

For the first question, we find that the weight and bias vectors
of all datasets basically vary around 1.0 and 0.0 in each layer, re-
spectively (see Fig 5 (a1)(a2)). One box represents the distribution
of the weight and bias vector values among all downstream tasks
in the corresponding layer, respectively. in two sub-figures. From
the box plot, we find that the variance and extremum (maximum
or minimum values) of weight and bias vectors in different layers
are similar, respectively. The results represent that the consistency
degree of the learned Hadamard adapters among different tasks is
similar in different layers.

For the second question, the weight vectors of the subsequent
normalization module both vary around 1.0 after adapter tuning
(see Fig 5 (b1), one box represents the distribution of the weight
vector values among all downstream tasks in a layer after adapter
tuning) and full fine-tuning (see Fig 5 (b2), one box represents the
counterparts after full fine-tuning). In the adapter tuning, we also
find that the variance and extremum of weight vectors in different
layers are similar Different from them, in the full fine-tuning, both
the most volatile layers and the most changes in extremum are
the front layers, and the corresponding fewest ones are both the
back layers. Moreover, the bias vectors of the normalization module
both vary around 0.0 after adapter tuning (see Fig 5 (b3), one box
represents the distribution of the bias vector values among all
downstream tasks in a layer after adapter tuning) and full fine-
tuning (see Fig 5 (b4), one box represents the counterparts after full
fine-tuning). We find that the trend of most volatile and extremum
in adapter tuning and full fine-tuning are similar. The most volatile
layers and the most changes in extremum are both the front layers,
and the corresponding fewest ones are both the back layers. The
results represent that the trend of the consistency degree among
different tasks along with layers in full fine-tuning and adapter tuning
is general similar.

For the third question, we calculate the cosine similarity of
weight vectors (see Fig 5 (c1)) and bias vectors (see Fig 5 (c2)) in the

Hadamard adapter, respectively, between each two downstream
tasks. Red color represents more similar between weight or bias
vectors of two tasks and blue color represents less similar. Due to
limitation of space, we only display the heatmaps of the first, the
middle layer and the average results. From the heatmaps, we find
that the similarity of weight vectors in each layer for different tasks
are almost same and consistent, and the values are closed to 1.0.
Meanwhile, the similarity of bias vectors in each layer are obvi-
ously different, and achieve 0.3 at most. The results indicate that
bias contributes most in the Hadamard adapter and some adapter
weights can be reused across different tasks, potentially leading to
a more efficient and generalizable adapter tuning approach. The
implications of this finding are significant, as it suggests that us-
ing a shared adapter approach could provide a more efficient and
effective way to fine-tune pre-trained models for multiple tasks.
By sharing weight vectors across tasks, the adapter network can
be made smaller and less complex, reducing the risk of overfitting
and improving the model’s generalization performance. Further
research is required to explore the extent to which adapters can be
shared across tasks.

6 RELATEDWORK
Previous parameter-efficient fine-tuning of PLMs contains three
main categories of methods, i.e., adapter tuning, prefix tuning, and
prompt tuning. Adapter tuning [15] is to inject a small neural net-
work module in each layer of PLMs, and only fine-tune parameters
in this small neural network module. For instance, Hu et al. [16]
propose Low-Rank Adaptation (LoRA) which injects trainable rank
decomposition matrices into each layer of the Transformer archi-
tecture. Mahabadi et al. [27] learn adapter parameters for all layers
and tasks by generating them using shared hypernetworks in a
transformer model. Liu et al. [22] introduce IA3, which incorpo-
rates three vectors (lk, lv, and lff) in each Transformer layer block,
going beyond the simple addition of weight and bias vectors to
the self-attention outputs. Qi et al. [30] propose LN-tuning, which
focuses on keeping only the gain term and bias term trainable in
the LayerNorm module. Prefix tuning [20] and prompt tuning [18]
preset additional adjustable prefix tokens in the input layers or
hidden layers, and only train these soft prompts during the fine-
tuning on downstream tasks. For instance, Liu et al. [24] propose
a prefix tuning method P-tuning which improve GPTs and BERTs
performance in both few-shot and fully supervised settings. Sun
et al. [34] propose the black-box tuning framework to optimize
the continuous prompt prepended to the input text via derivative-
free optimization. Gu et al. [10] pre-train prompts by adding soft
prompts into the pre-training stage to obtain a better initialization.
He et al. [12] propose a MAMAdapter which use prefix tuning with
a small bottleneck dimension at the attention sub-layers.

In addition to the above three parameter-efficient fine-tuning
ways, there are also some other related research. For example,
Ben Zaken et al. [3] propose a Bias-term Fine-Tuning method which
train only the bias-terms and the task-specific classification layer.
Liu et al. [23] present a novel PLMs’ compression approach based
on the matrix product operator. Ansell et al. [1] propose Lottery
Ticket Sparse Fine-Tuning conceived for pruning of large neural
networks. Liu et al. [25] learns dense representations for labels Y
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Table 5: The influence of different number of unfreezing layers of the Hadamard adapter on the performance of downstream tasks.

PLMs Tasks 4 8 12 16 20 24 PLMs Tasks 4 8 12 16 20 24

BERT-base

CoLA 50.0 56.3 58.4 - - -

RoBERTa-base

CoLA 55.7 62.6 64.3 - - -
QNLI 80.8 87.5 89.7 - - - QNLI 83.3 89.2 91.6 - - -
QQP 78.2 84.0 85.9 - - - QQP 79.6 85.9 87.7 - - -
MNLI 71.5 78.3 80.4 - - - MNLI 77.5 83.7 85.5 - - -
RTE 62.5 69.8 71.9 - - - RTE 70.3 78.8 80.7 - - -
STS-B 79.0 86.7 88.5 - - - STS-B 81.2 87.9 90.1 - - -

BERT-large

CoLA 53.4 57.9 61.8 62.0 62.7 62.7

RoBERTa-large

CoLA 58.1 59.7 62.0 65.8 66.9 67.8
QNLI 83.4 84.7 88.5 91.1 91.1 91.1 QNLI 85.2 90.6 93.8 95.1 95.1 95.1
QQP 80.6 82.4 85.5 86.9 87.2 87.2 QQP 82.4 86.5 88.7 90.3 90.3 90.3
MNLI 73.7 80.5 82.3 82.9 82.9 83.6 MNLI 79.6 83.1 85.4 87.2 89.5 89.5
RTE 65.8 67.3 70.8 73.1 73.1 73.1 RTE 72.1 75.6 80.5 83.0 84.7 85.9
STS-B 82.3 83.2 86.4 89.5 89.8 90.0 STS-B 82.8 84.3 88.4 90.9 91.9 91.9

Figure 5: Each module in the Hadamard adapter based on each layer to answer three questions. Question one corresponds to
(a1) and (a2), Question 1 corresponds to from (b1) to (b4), and Question 3 corresponds to (c1) and (c2)

when training PLMs and aligns them to fixed feature representa-
tion. Xu et al. [40] only update a subset of parameters of PLMs
via masking out the gradients of the non-child network during the
backward process. Mao et al. [28] introduce UNIPELT that learns
to activate (upweight) the submodules that best suit the current
task or specific data sample and deactivate (downweight) the rest.

While the existing research significantly enhances the parameter
efficiency when training PLMs, we hypothesize that there still exist
superfluous parameters that could be eliminated. To address this,
we introduce a highly efficient Hadamard adapter, which boasts the
fewest parameters to date, yet delivers performance on par with
full fine-tuning methods.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a Hadamard adapter based on a simple
but effective element-wise linear transformation on the outputs of
self-attention in PLMs.Wemake comprehensive analysis for the fea-
sibility of the Hadamard adapter, and summarize out some valuable

patterns of it on downstream tasks. The experiments demonstrate
that the proposed Hadamard adapter achieves competitive per-
formance with 0.033% parameters compared with full fine-tuning.
Moreover, some layers in the Hadamard adapter are considered
redundant to be removed for more parameter efficiency with 0.022%
parameters, which will be further investigated in the future study.
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