Knowl Inf Syst @ CrossMark
https://doi.org/10.1007/s10115-018-1198-6

REGULAR PAPER

Preference modeling by exploiting latent components
of ratings

Junhua Chen! - Wei Zeng!® - Junming Shao? -
Ge Fan!

Received: 27 June 2017 / Revised: 12 March 2018 / Accepted: 18 April 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract Understanding user preference is essential to the optimization of recommender
systems. As a feedback of user’s taste, the rating score can directly reflect the preference
of a given user to a given product. Uncovering the latent components of user ratings is thus
of significant importance for learning user interests. In this paper, a new recommendation
approach was proposed by investigating the latent components of user ratings. The basic
idea is to decompose an existing rating into several components via a cost-sensitive learning
strategy. Specifically, each rating is assigned to several latent factor models and each model
is updated according to its predictive errors. Afterward, these accumulated predictive errors
of models are utilized to decompose a rating into several components, each of which is
treated as an independent part to further retrain the latent factor models. Finally, all latent
factor models are combined linearly to estimate predictive ratings for users. In contrast to
existing methods, our method provides an intuitive preference modeling strategy via multiple
component analysis at an individual perspective. Meanwhile, it is verified by the experimental
results on several benchmark datasets that the proposed method is superior to the state-of-
the-art methods in terms of recommendation accuracy.

Keywords Collaborative filtering - Matrix factorization - Multi-criteria recommender
systems
1 Introduction

With the rapid growth of the Internet and the overwhelming amount of contents and choices
that people are confronted with, recommender systems have been developed to facilitate the

B Wei Zeng
zwei504 @uestc.edu.cn

L' Trusted Computing and Automated Reasoning Lab, University of Electronic Science

and Technology of China, Chengdu 611731, People’s Republic of China

Web Sciences Center, Big Data Research Center, University of Electronic Science and Technology
of China, Chengdu 611731, People’s Republic of China

Published online: 26 April 2018 9\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1198-6&domain=pdf
http://orcid.org/0000-0002-3111-9579

J. Chen et al.

decision-making process. During the past decades, more and more researchers have started to
study the multi-criteria recommender system, which allows individual users to rate multiple
attributes of an item [1,2]. For instance, a two-criteria movie recommender system allows
users to express their preferences on two attributes of a movie (e.g., story novelty and visual
effect). A user may be fond of the visual effects but dislike the story of a movie. In such a
case, the movie is rated by a user based on two ratings, namely the story and visual effect
attributes.

In a multi-criteria recommender system, an individual user can make a choice based on
more than one utility-related aspect. Actually, a user usually rates a movie after a comprehen-
sive consideration. For example, she may firstly consider the movie’s director, actors, story
and visual effects, and then make the choice. Therefore, the accuracy of item recommendation
can be enhanced by the additional information provided by multi-criteria ratings because it
can represent more complex preferences of each user. Recent works also demonstrated that
the multi-criteria technique is superior to the traditional methods that utilize single-criterion
ratings [3].

Multi-criteria rating systems require comparably higher users’ involvement because each
user need to complete rating on all criteria, which increases the likelihood of obtaining missing
or incomplete data. Additionally, consistent family of exhaustive and non-redundant criteria
raises the costs of establishing a recommender system. Therefore, a number of known Web
sites still prefer the single-criterion rating system [4]. Most collected datasets accordingly only
contain single-criterion ratings. Some previous studies indicate that users’ evaluation of items
(products and service, etc.) generally relies on several criteria, since there are certain decision
problems that have to be addressed simultaneously [5,6]. There arises a question whether
the users’ preferences on diverse criteria can be uncovered by exploiting the information of
single-criterion ratings. If the problem is solved, there will be lower cost of establishing a
recommender system along with more accurate item recommendation.

In this paper, it is assumed that individual users’ evaluations on items are multi-criteria,
and their ratings consist of multiple latent components in a single-criterion recommender
system. In order to determine these latent components, we make use of several latent models
based on the matrix factorization method which maps both users and items to a joint latent
factor space. The gradient descent approach is adopted to learn the parameters of the model
in an iterative way. At each iteration, the predictive score between a user and an item is cal-
culated independently by each latent model, and the deviation between the predictive score
and the real rating is recorded. Each model is then assigned a weight according to its predic-
tive deviation, where a smaller deviation reflects a larger weight. Afterward, each rating is
decomposed into several latent components with respect to the weight of each latent model.
A latent component reflects a user’s preference on one criterion, and all ratings’ latent com-
ponents are subsequently exploited to retrain those learned latent models to further improve
their predictive accuracy. Finally, we linearly combine the predictive rating calculated by
those latent models.

In a traditional multi-criteria recommender system, all the ratings on attributes of an item
are explicitly given by individual users [3], whereas in our method, all latent components of
arating are automatically learned by several latent factor models. Therefore, our method not
only overcomes the drawback of single-criterion ratings but also requires less information
than the multi-criteria technique. The contributions of our work can be summarized as follows:

@ Springer

Preference modeling by exploiting latent components of ratings

1.1 Intuitive preference model

Instead of utilizing multiple ratings explicitly given by users, we decompose a rating into
multiple latent components. Those latent components can better reflect the user’s preference
than a single-criterion rating. Moreover, less information is required by our method when
compared to the multi-criteria recommender system. Therefore, our method enjoys better
application possibilities.

1.2 Predictive performance

An individual user’s evaluation on items normally relies on several criteria, which has been
verified in the multi-criteria recommender system [3,4]. Motivated by this idea, we uncover
latent ratings of users on diverse criteria in a single-criterion recommender system. Within
our method, more information can be uncovered from individual ratings, which enables our
method to alleviate the sparsity problem of recommender systems to some extent. Meanwhile,
the experimental results on five real datasets show that our method outperforms the state-of-
the-art approaches, which indicate that our method learns the structure of the data better than
existing approaches.

The rest of the paper is organized as follows. Section 2 gives a brief overview of the
related research close to our work. Section 3 covers preliminaries and our proposed model.
The Experiments are shown in Sect. 4, and finally, this paper concludes with Sect. 5.

2 Related works

Based on the assumption that an individual user’s evaluation on items generally relies on
several criteria, we decomposed each single-criterion rating into several latent components.
Each component can be considered as an individual rating on one criterion. Therefore, our
work is related with both the single-criterion and multi-criteria approaches. In this section,
the related works are reviewed.

2.1 Single-criterion recommender systems

Up to now, plenty of methods have been proposed to solve the personalization problem.
Among them, the collaborative filtering (CF) methods are considered to be the most popular
one, which have been widely investigated and applied in online systems [7]. The CF methods
can be categorized into two classes: neighborhood [8,9] and model-based methods [10-13].
The neighborhood CF approaches can be further divided into two groups: the user-based
CF and the item-based CF [14-16]. The assumption of the user-based CF is that similar
users have similar tastes or preferences, whereas the item-based CF assumes that a user
tends to collect similar items. The key of neighborhood CF approaches is to compute the
similarity between neighbors or to provide a method to find the candidate neighbors. In
order to find a user’s neighbors efficiently, certain cluster-based methods have been proposed
[17,18]. Cluster-based methods first cluster the users and then calculate the user’s neighbors
within the cluster. For instance, Alqadah et al. [18] proposed a biclustering neighborhood CF
approach for the top-n recommendation which combines local similarity of biclusters with
global similarity. Liu et al. [17] exploited the global k-means method to divide users into
disjoint groups by making use of users’ multi-criteria ratings.

@ Springer

J. Chen et al.

Due to the simplicity and efficiency of neighborhood CF methods, they have a very
wide application. For example, GroupLens and Bellcore video exploited individual ratings
to predict their interests in articles and movies [14,15]. In most recommender systems, the
number of users is usually greater than the number of items. In addition, the amount of ratings
for each item is often greater than the amount of ratings for each user. Thus, item-based CF
methods are preferable by online retailers, such as Amazon.com and Last.fm [8,16].

Unlike neighborhood CF methods, model-based CF methods make use of users’ ratings
to learn a predictive model. Breese et al. [19] proposed a Bayesian clustering model which
introduces certain groups to reflect the common preferences and tastes of users. The latent
semantic analysis models users’ ratings as a mixture of individual communities [10]. Latent
Dirichlet Allocation (LDA) is a flexible generative probabilistic model for the collection of
discrete data, which can be used for document classification and collaborative filtering [11].
The Restricted Boltzmann Machines, a kind of two-layer undirected graphical models, was
presented to recommend movies for users [12].

It is worth mentioning that the matrix factorization (MF) approach is becoming increas-
ingly popular in recent years due to its good scalability and predictive accuracy [20-25]. The
rating matrix is composed of two parts in this approach, i.e., the user latent factor matrix
and the item latent feature matrix. The predictive score is obtained by the computation based
on the inner product of the user latent feature vector and the item latent feature vector [20].
Generally, the low-rank approximation method and the regularization method are used to get
the latent feature matrices and prevent overfitting, respectively [21-24].

Recently, a number of enhanced matrix factorization methods are proposed [21,22,26].
For instance, Koren [26] proposed a combined approach which improves prediction accuracy
by capitalizing the advantages of both the neighborhood-based method and the matrix fac-
torization method. The probabilistic matrix factorization is a probabilistic interpretation of
the traditional matrix factorization methods [21], which yields better scalability and robust-
ness. Furthermore, a Bayesian treatment is applied in the probabilistic matrix factorization
method which makes use of Markov Chain Monte Carlo (MCMC) method for approximation
inference. The new method is applicable to a large dataset and achieves significantly higher
predictive accuracy than the base probabilistic matrix factorization method [22].

As mentioned above, the user and item latent factor are normally obtained by the low-rank
approximation method which constructs a matrix that approximates the rating matrix at its
observed entries. Recently, Lee et al. [23] proposed a local low-rank approximation which
firstly divides the rating matrix into several submatrices consisting of certain row—column
combinations and then each submatrix is constructed by a low-rank approximation. Further-
more, Lee et al. [27] replaced the squared loss reconstruction by a ranked loss minimization
in his method which outperforms state-of-the-art methods in terms of item ranking.

The matrix factorization is quite a flexible method, which allows incorporation of addi-
tional information, such as time factor [28-31], geographical information [32-35] and social
information [36-39]. For instance, Koren [28] investigated the temporal dynamics of cus-
tomer preferences and modeled the temporal dynamics along the whole time period. Authors
applied the methodology with two recommender techniques: the factorization model and the
neighborhood model. In both models, the temporal dynamics can be useful in improving
the quality of rating predictions. McAuley et al. [31] developed a latent factor model which
explicitly accounts for each user’s level of experience. The time-aware model can not only
achieve better recommendations but also allow to study the role of user experience and exper-
tise. Lian et al. [35] incorporated the geographical information and the user activity data by
the weighted matrix factorization which can alleviate the sparsity problem. Shen et al. [39]

@ Springer

Preference modeling by exploiting latent components of ratings

integrated the user-item ratings with the social information by a probabilistic model, and the
expectation maximization algorithm was used to infer parameters of the model.

2.2 Multi-criteria recommender systems

Compared to single-criterion recommender systems, the multi-criteria recommender system
contains more information, including ratings of item attributes. The complexity of algorithms
is increased by the additional information; however, in most cases the quality of the recom-
mendation can also be improved by incorporating the auxiliary data [3,17,40,41]. To the best
of our knowledge, examples of multi-criteria recommender systems include Zagat’s Guide,
Buy.com and Yahoo! Movies [42]. To exploit the information of multi-criteria ratings, a com-
monly used method is to extend the computation of similarity, from single-criterion ratings
to multi-criteria ratings [40,41,43]. For example, within a user-based collaborative filtering
approach, the similarity of two users is computed by making use of their single-criterion rat-
ings while in a multi-criteria recommender system, the computation of similarity is performed
on each criterion and finally averages the result over all criteria. Lee et al. [44] extended the
concept of single-criterion rating to multi-criteria ones and utilized skyline query algorithm
to find candidate items. In paper [45], an adaptive neuro-fuzzy inference method is used to
discover the relationship between each criterion and the overall ratings. A fusion of fuzzy
cosine and Jaccard similarities is further adopted to calculate the total similarities between
users/movies.

Recently, regression methods are exploited in the multi-criteria recommender system with
the assumption that a user’s global rating is a linear/nonlinear combination of her ratings
on each criterion [2,40,46]. For instance, Jannach et al. [40] made use of support vector
regression to determine the relative importance of the multi-criteria ratings and combined
user-based and item-based regression models in a weighted way. Zheng [46] utilized the
biased matrix factorization to estimate a user’s rating on each criterion and chose the support
vector regression to learn the relevance of the multi-criteria ratings. There usually exists user
clusters in many recommender systems. Within the same cluster, individual users behave
similarly. Paper [2] made use of multi-criteria ratings to detect user clusters and then to learn
the importance weight of multi-criteria ratings through the regression model. In paper [47],
authors applied Self-Organizing Map clustering algorithm (SOM) to detect user clusters and
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to discover the relative importance of
the individual criterion ratings.

Another way to make use of multi-criteria ratings is to construct a predictive model by
learning from the observed data, including probabilistic modeling, multi-linear SVD model
and matrix factorization [24]. For instance, Saboo et al. [48] extended the flexible mixture
model to multi-criteria rating systems, where the user behavior and item characteristics
were characterized separately by two latent variables. Li et al. [49] improved the traditional
collaborative filtering method by expanding the criterion to a tensor and utilizing the multi-
linear SVD model. Furthermore, the multi-linear SVD model is combined with the adaptive
neuro-fuzzy inference method to solve the scalability and sparsity problem in a multi-criteria
system [1,50]. McAuley et al. [51] learned attitudes and attributes from explicit multi-aspect
reviews with a joint probabilistic model to yield better recommendations. Based on the matrix
factorization technique, Pozo et al. incorporated individual users’ explicit ratings with their
implicit interest in the attributes of items [52].

@ Springer

J. Chen et al.

2.3 Limitations of related works

The user decision-making process is considerably complex [4], since they may rely on several
criteria to evaluate an item. For instance, in a movie recommender system, a user may
take into account a movie’s story, sound and graphic effects before she decided to see the
movie. Although many existing single-criterion-based recommendation methods achieved
a remarkable success, they failed to uncover the individual user’s preference on different
criteria [3]. In a multi-criteria recommender system, users are allowed to rate attributes of
items explicitly; however, it needs the high-level involvement of users. Too few criteria lead
to a poor understanding of users’ preferences, while too many criteria lead to impatientness
of users to rate each criterion. Both of scenario greatly raise the likelihood of obtaining
incomplete data; thus, the incompleteness of data significantly affects the accuracy of the
recommender system.

Therefore, given the limitation of related works, we uncover users’ preferences on dif-
ferent criteria by exploring single-criterion ratings. Our method does not require additional
information and it outperforms the state-of-the-art approaches, which indicates our method
learns the structure of data better than existing ones.

3 Latent components of ratings

In this section, we mainly discuss our method, which investigates the latent components of
user ratings, namely LCR model. A rating system can be represented by a weighted adjacency
matrix R,xm = {rui}, Where r,; is the rating which user u gives to item i. If item i is not
rated by user u, then r,; = 0. n and m are the number of users and the number of items in
the system, respectively. As we know, the goal of a recommender system is to predict scores
between each user and her uncollected items and then to recommend the top-L items with
the highest scores. Thus, research on recommender systems is always challenged by finding
the most accurate recommendation algorithms.

3.1 The problem statement

In the multi-criteria recommender system, an individual user’s diverse and complex pref-
erences can be demonstrated by giving ratings to attributes of an item. However, in most
existing recommender systems, a particular user is constrained to give a single-criterion
value to an item. It is shown by the recent works that this mechanism has some potential
limitations, because a user may make a choice based on more than one utility-related aspect
[4]. By borrowing ideas from multi-criteria recommender system, the goal of our work is to
decompose the rating matrix R into ¢ latent matrices: R =) ;| Ry. We assumed that those
latent matrices are independent to each other, and the latent matrix R, has the same size with
the original rating matrix R. There are plenty of composition forms. For instance, the rating
matrix R can be composed randomly of several submatrices. However, this method is useless
in improving the accuracy of recommendation algorithms. More details can be found in the
Experiments section.

In this paper, itis assumed that preferences of users are multi-dimensional, and each dimen-
sion can be represented by a latent factor model. It is like, in a multi-criteria recommender
system, different models are used to denote a user’s diverse preferences on several attributes
of an item. Thus, with our method, the complex preferences of users can be uncovered with

@ Springer

Preference modeling by exploiting latent components of ratings

Table 1 Notations used in this paper

Notation Description

n The number of users

m The number of items

c The number of latent component of ratings

R The rating matrix

Tui The rating that user u gives to item i

Tui The predictive rating between user u and item i

Xu, Vi The latent factor vector of user u# and item i, respectively

n The global average rating

b;, by The deviation of user u# and item i, respectively

A The coefficient of the regularization

y The learning rate

'r\i?) The predictive score between user u and item i by latent model ®
xl(,a), yi(a) The latent factor vector of user # and item i with respective to model ®4
w® The weight allocated for model ®, given the training rating r,,;

no necessity for additional information. Moreover, to simplify the computation, those latent
factor models are supposed to be independent of each other and are trained simultaneously.

The cost-sensitive approach was adopted to learn latent factor models. More specially, ¢
latent factor models, {®1, ®», ..., ®.}, were randomly initialized, and then the predictive

score’r\,(ﬁ) between user # and item i was computed by model ®,,. By referring to the deviation

between ?;‘;’) and the real rating r,;, the weight of model ®, with respect to rating r,; was
recorded. Finally, by exploiting the accumulated weight, the rating matrix R was decomposed

into ¢ latent matrices. All of the major notations used in this paper are given in Table 1.

3.2 Latent factor models

In this paper, latent factor models were adopted to decompose ratings, based on the matrix
factorization. Firstly, users and items were mapped by the matrix factorization approach to
a joint latent factor space of dimensionality k. Then each user was associated with a vector
Xy, and each item was associated with a vector y;. And the predictive score 7,,; between user
u and item i was obtained by the inner product of x,, and y;:

Tui = X1 yi, (1)

which is the basic form of the matrix factorization. One advantage of the matrix factor-
ization approach is its adaptability to various data resources and other application-specific
requirements. For example, biases of users and items are added in Eq. 1, to indicate the
observed deviations of users and items, respectively [53]. Therefore, the equation of matrix
factorization with biases can be defined as:

Fui = 1+ bi + by +xLy;, 2)

where p is the global average rating, and b, and b; are the deviation of user « and item i,
respectively, from the average.

@ Springer

J. Chen et al.

At last, the biased matrix factorization approach was chosen to decompose each rating
due to the following concerns. Firstly, the biased matrix factorization approach is superior to
other recommendation algorithms such as collaborative filtering, basic matrix factorization,
nonnegative matrix factorization and probabilistic matrix factorization in terms of recom-
mendation accuracy [53-55]. Secondly, the complexity of the biased matrix factorization
is comparable to the basic matrix factorization. In this paper, our algorithm was imple-
mented based on the LibRec package, which is a GPL-licensed Java library for recommender
systems.! In general, it runs much faster than other packages while achieving competitive
performance. Thirdly, multiple preferences of users can be further explored by taking into
account the biases of users and items [20]. As mentioned above, users may rely on more than
one aspect to make a choice, which may cause interest biases of individual users.

Given the observed ratings, the biased matrix factorization approach is learned by mini-
mizing the objective function:

min_ i =T+ 2l =+ Wil + by + b)), 3
u,t

where A is the regularization parameter which is used to prevent overfitting and is set to
0.005. The gradient descent method is used to obtain x,, y;, b,, b; whose initial values are
generated randomly from the Gaussian distribution with mean 0 and variance 0.1. x*, y*,
b* stand for the general form of x,, y;, b, and b;, respectively. In order to get the optimal
parameters in Eq. 3, the stochastic gradient descent approach is applied to update parameters
in the opposite direction of the gradient of the cost function:

by < by +y - ((rui —Tui) — - by)
bi < bi +y - ((rui —Tui) — - b;)
Xy <Xy + Y- ((rui —Twi) - Yi — - Xy)

Vi < Yi+ v ((rui —Tui) - Xu — A=)

“

where y is a step size which is usually set to a small value (e.g., 0.005).

3.3 Rating decompositions

Although with biased matrix factorization approach both users and items can be well mod-
eled, its assumption that a rating is a single component would limit potential methods for
better modeling the overall data. Therefore, we supposed that each rating is comprised of
several latent components, and each component can be learned by an independent model.
As mentioned above, we firstly initialized c latent factor models: {®, ®,, ..., ®.}. Each
model ®, was based on an independent biased matrix factorization. The predictive score
?1(4?) between user u and item i by model ®, can be given by:

where x,ia) and yl-(a) are latent vector of user and item with respect to model ®,, respectively.
Secondly, the cost-sensitive approach was applied to assign rating r,; to the latent models
for training. More specifically, the following cost function was minimized as:

1 http://www.librec.net/index.html.

@ Springer

http://www.librec.net/index.html

Preference modeling by exploiting latent components of ratings

: @, e
X*I:I;y’lb* Z Z(w ui)

u,i a=l

H(Z I)2 +Z|| i IP @) +(b(‘”)>

6)

() is the wei ight allocated for model ®, when training the ratmg

ryi. The parameter X is set to O 005 in all models and initial values of x(a), y(a) b(a) b(a)

generated randomly from the Gaussian distribution with mean 0 and variance 0.1. Meanwhlle
(o)

w,;” was computed as follows:

where the meta-parameter w,,

(@) e_‘rui_?,(;()l
Wy = ZC I _7?([1)‘ ' @)
e ui ui
a=1

From Eq. 7, it can be seen that the weight of model ®,, is inversely proportional to the
absolute error between the predictive rating'r:(t‘;) and the real rating r,,; . The assumption behind
our method is that the weight of model ®, can be reflected by its predictive performance.
Similarly, the stochastic gradient descent method was utilized to acquire parameters in Eq.
6. In order to reduce the complexity of our method, we compute the w(a) by T, A(O’) obtained in

the last iterative step. The weight w() at each iteration was preserved, in order to decompose

ratings further. Thus, for a given tralnlng rating r,;, we updated the parameters in model ®
as follows:

B b |y ((w(i[)rm _?(qz)) . blfta))

((uirs =77) = 2-57)
2@ x@ 4y ((w : A(a)) y(a) 2 'xb(fx))

yl.(a) <~ yl.(a) —A- yl.(“))

@)
rul =TI,

@ _ p
b — b +y-
®)

w(or)

Given the training rating r,;, we re-computed the weight w(of) of model ®, at the end of

(Ot)

each iteration presented above. After the training process, the weight w,;” of model ®, was

then accumulated as:

wii® Z w? (q). ©)

where p is the frequency that training rating r,; is used in the iterative process. Finally, the

weight is normalized as:
*(ar)
7((1) — wui (10)
Hui ZZ 1 w*(a)

()

Based on the normalization weight w,;”, we can decompose rating r,,; into ¢ latent compo-

nents. The score of the ath component can be obtained by r(a) = w(a)rm. The pseudo-code

of the rating decomposition is presented in Algorithm 1.

@ Springer

J. Chen et al.

1: Input: the rating matrix R € R"*™"
2: Initialize: b(a) b<a) (a) .(a), ot
3:

4: for iterationg = 1 to p do

S:
6: for rating r,; in R do
7:
8: for model @ = 1 to ¢ do
9: h,s @ b(@) +y- ((w(a)r A(a)) A b,sa))
10: b b 4y ((w(‘j)r jﬁ‘j)) s b("))
1: oy (P r 7). % e x®)
12: yi(a) <~ Y,(a) +vy- ((w(lf)rm A,ﬁ?)) 'xu — A y,a))
@ i
13: w,; (q) < &
Sy e |
14:
end for
15: end for
16:end for
17:

18: for rating r,,; in R do

. w(a) _ p ()
19: w,; —1 W, (@)
@) _ (")

20: Wyi = (‘ . w*(oz)

21:

22: for m(idel o (_ 1tocdo
" end for

25:
end for

26: Output: latent component matrix R@ — {r },Mm, a=1,

, C

Algorithm 1: The decomposition of user ratings.

: Input: latent component matrix R("‘), a=1,...c
: for model @ = 1 to ¢ do

1

2

3

4

5: for latent rating 7, *(a) in R do

6: b(a) <—b(u)+y (C(a) A(OI)))"'bl([a))
7 b(a) <—b(°’)+y (((a) A(Ot)) A b(a))
8

9

10

uit

(Ot) ()

x by @ 7). y, — 3 xi®)
»® <—y,(“)+y (G A(“)) 0 =y
end for
11:
end for

12: Output: b,sa) h(a) (a), i(), a=1,..c

Algorithm 2: Model retraining.

@ Springer

Preference modeling by exploiting latent components of ratings

3.4 Models retraining

After the above processes, ¢ learned models, as well as ¢ latent components of each rating can
be obtained. For those learned models, if we combine them linearly to generate predictive
ratings, most of the predictive scores would exceed 5 point (assuming the rating score ranges
from 1 to 5). Therefore, it is necessary to retrain those ¢ latent models. For all observed
ratings, we pick out their ath latent component to retrain the learned model ®, mentioned
above. The objective function for the according model ®,, is similar to Eq. 3:
i, Y <07

T i (11)
+ A1 + 1y 1 + B + B,

where r,,; in Eq. 3 is replaced by latent component ffg). We repeated this process for each
learned model. It is worth mentioning that the learned model ®,, cannot be reinitialized since
they have preserved the information of original ratings. The model retraining process is given
in Algorithm 2.

3.5 Rating predictions

Then, ¢ new latent factor models were obtained. By combining those models linearly, we can
get the final predictive score between user u and item i:

c
Fui= Y R (12)
=1

where 'r\l(:lx) is computed by Eq. 5.

In order to demonstrate the process of our method, we randomly select five real ratings
in the MovieLens dataset and present their decompositions in Fig. 1. Firstly, the gradient
descent method is utilized to compute the weights of latent models with respect to those
five ratings, namely wh w@ WO in Fig. 1. Secondly, the weights of latent models
are exploited to decompose each rating into five latent components. For instance, the rating
r1 = 4 is decomposed into 0.92, 0.88, 0.76, 0.68 and 0.76. Thirdly, each group of the latent
component is chosen to retrain the previous learned models. For example, the first group of

latent component ﬁ(l) is selected to retrain the first latent model ®1. Finally, each new latent
model can generate a predictive rating, and we linearly combine them as the final rating for
a given user.

To sum up, our method can be divided into two steps: rating decomposition and model
retraining. Our method is more complicated than the traditional matrix factorization method
but its running time grows linearly with the traditional MF. The details can be found in the
Experiments section.

4 Experiments
4.1 Experimental Setup

In order to evaluate the accuracy of our method, five benchmark datasets are selected,
namely MovieLens, Douban, Movietweetings, Epinions and Goodreads. MovieLens is a

@ Springer

J. Chen et al.

Algorithm1: Rating decomposition
R wO W@ y® @ e R® R® RB® R® RO
ry=4 0.23 0.22 0.92 0.88
r,=3 0.18 0.21 0.54 0.63
r;=3 » 0.19 047 057 0.51 CZ,
q =
ry=3 0.17 0.22 0.51 0.66 (03 ‘8
r5=5 3 =
5 0.16 0.21 0.80 1.05 ’C__E'_ -5_-
o3
2N
438
«Q
Model| @1 6 03 0, 05

133

Predictive rating 71 @ 73 2@ 6

Finalrating ¢ =) 4 $@ 4B 1 p® L)

Fig. 1 A visualization of LCR method

movie recommendation Web site, which uses individual users’ rating to generate personal-
ized recommendations [56]. Douban, launched on March 6, 2005, is a Chinese Web 2.0 Web
site providing user reviews and recommendation services of movies, books, and music [57].
The raw data contain user activities before August 2010, and we filtered out those users who
have rated fewer than 20 movies. Movietweetings is a dataset consisting of ratings on movies
which were contained in well-structured tweets on Twitter [58]. The raw dataset consists of
45,604 users and 26,165 items. Epinions is a Web site where people can review products, and
the raw data consist of 876,252 users and 120,492 items. Goodreads is a book sharing and
recommendation Web site, and the collected data contain user activities before August 2010.
As it is quite difficult to provide accurate recommendations for inactive users, we filtered out
users who have rated less than 20 items. The detailed information of datasets is presented in
Table 2, where the user degree k, is defined as the number of items that the user has rated
and (k,) denotes the average user degree over all users. The more items a user has rated,
the more accurate a predictive model can be obtained. Both the sparsity and the user degree
affect the accuracy of a recommendation method [59,60].

Each dataset is randomly divided into two parts: the training set (E Ty and the test set (ET).
The training set and test set consist of 70 and 30% of the original data, respectively. We make
use of the cross-validation to obtain the accuracy of each recommendation method, which is
computed based on 5 independent instances of training and test set [31]. The commonly used
root-mean-square error (RMSE) was adopted to evaluate the accuracy of methods, which
could be expressed as:

1
RMSE = | 1 S (Fui — rai) (13)
ru;EEP

@ Springer

Preference modeling by exploiting latent components of ratings

Table 2 The statistics of five benchmark datasets, MovieLens, Douban, Movietweetings, Epinions and
Goodreads

Dataset #Users, n #Items, m #Ratings, / Sparsity, s (%) (ky)

MovieLens 6040 3706 1,000,209 4.47 165.6
Douban 6472 7755 2,147,843 4.28 331.9
Movietweetings 2331 1669 196,359 5.04 84.2
Epinions 66,512 12,631 5,909,085 0.70 88.8
Goodreads 96,131 39,704 12,577,677 0.33 130.8

The table shows the number of user (n), number of items (/) and number of ratings (/) for each dataset
l

nxm

accordingly. The Sparsity is computed by

4.2 Comparison models

Eight methods in total were selected to compare with our method. SlopOne is an item-based
collaborative filtering approach which was chosen as the benchmark method [61]. Five matrix
factorization methods were selected, which were biased matrix factorization (BMF for short),
SVD++, nonnegative matrix factorization (NMF for short), probabilistic matrix factorization
(PMF for short) and Bayesian probabilistic matrix factorization (BPMF for short). Two
cluster-based methods, which were Latent Dirichlet Bayesian co-clustering method (LDCC
for short) and Bayesian user community model (BUCM for short). The cluster-based method
partitions individual ratings in a macro-level, whereas our method decomposes ratings in a
micro-level. Therefore, we adopted those two cluster-based methods to compare with our
method. Details of these methods are given as follows:

— SlopOne SlopOne is the simplest form of non-trivial item-based collaborative filtering
algorithm based on ratings [61], which is chosen as the benchmark method.

— Biased Matrix Factorization (BMF) A latent factor model which directly models only
the observed ratings and prevents overfitting with a regularized term [26]. BMF is adopted
as the base model of LCR. Since our method has more parameters than BMF, we train
multiple BMF models simultaneously and average their predictive scores (MBMF for
short). This method is chosen since it shares the same number of parameters with our
method.

— SVD++ A latent factor model which makes use of implicit feedback information of users
[26]. The implicit feedback refers to users’ history information which indicates their
preference.

— Nonnegative matrix factorization (NMF) A matrix factorization method which con-
straints its factorization results to be nonnegative. The learned nonnegative vectors are
the sparse representation of the users and items [62].

— Probabilistic Matrix Factorization (PMF) and Bayesian Probabilistic Matrix Fac-
torization (BPMF) As a probabilistic view of matrix factorization, the PMF is able to
scale linearly with the observed ratings and has good performance on very sparse and
imbalance data [21]. The BPMF can prevent overfitting through integrating over all model
parameters and hyperparameters [22].

— Latent Dirichlet Bayesian Co-Clustering (LDCC) This method is an extension of
Bayesian co-clustering model, and uses collapsed Gibbs sampling and collapsed varia-
tional inference for parameter estimation [63].

@ Springer

J. Chen et al.

— Bayesian User Community Model (BUCM) Relied on both item selection and rating
emission, the BUCM generates communities for users who experience the same items
and tend to adopt the same rating pattern. Each user is modeled as a random mixture
of topics, where each topic is characterized by a distribution modeling the popularity of
items within the respective user community and by a distribution over preference values
for those items [64].

4.3 Results and analysis
4.3.1 The weights of models

In our method, the weight w(; obtained by Eq. 7 is used to decompose a rating. Therefore,
the stability of our method would be significantly affected by the convergency of w{;. Thus,
we randomly selected a rating and plotted the convergency of w}; as shown in the left of Fig.
2. In total, five latent factor models were exploited to decompose ratings. From Fig. 2, it can
be seen that the weights of models stay stable after the third iteration. In addition, it can be
indicated by the varied weights of latent models that users may have complex preferences.
Moreover, the average weight of each latent model over all ratings was computed, and the
results can be found in the right of Fig. 2. It can be seen that there is almost no difference
among the average weights of latent models, which means in a micro-level (a single rating),
the latent models are different from each other; however, they are unbiased in a macro-
level (all ratings). It is of great importance for our method to be unbiased. If our method
is biased, then one of the latent models (denoted by ®,) will have the maximum weight,
which is significantly larger than the weight of remaining models. As times of iteration grow
infinitely, the weight of model ®, will converge to 1 and weights of the remaining models
will converge to 0. If such a result is obtained, then it indicates that individual ratings cannot
be decomposed into latent components.

For a given rating, each model is assigned a weight according to its predictive error. We
studied the weight distribution of a model over all individual ratings. The result is presented in
Fig. 3, where the weight distribution of each model is presented independently in subfigures.
It can be seen that the weight distribution is close to Gaussian distribution with mean 0.2.

Single rating All ratings
0.22 0.20002
0.20001 e cl
0.21 R,
3 &% 6 4 o . . _ 020000 & a3
€ e c4
D 0.20f Ny et -
g ¢ 0.19999 T L S S e
) 00— "
£ 019 o2 0.19998
o 0.19997
0.18
0.19996
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Iteration Iteration

Fig. 2 The convergence of w, i.e., the weights of rating components. The left plot shows the convergence of
w in a single rating entity and the right plot shows that with respect to all ratings, that is, the average of all
entities. The weights of different components are denoted by different colors

@ Springer

Preference modeling by exploiting latent components of ratings

0, CH
20.00% ——— 40.00% —
17.78%
% |
15.56% 30.00% -
13.33%
> >
o o
€ 11.11%| c
g $ 20.00% |
T 8.89%| o
(9] (9]
& &
6.67%}
% |
aaav%l 10.00%
2.22%}
0.00% 0.00%
016 017 0.18 019 020 021 022 023 024 025 016 017 0.18 019 020 021 022 023 024 025
weight weight
03 Oy
40.00% —e 20.00% —
17.78%
ol
30.00% | 15.56%
13.33%}
> >
2 2 11.11%
11%}
9 20.00% | g
I3 T 8.89%|
(9] (9]
& &
6.67%}
o |
10.00% 4.44% |
2.22%}
0.00% 0.00%
0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25
weight weight
95
40.00% — —
30.00%
>
[}
c
9 20.00%}
o
(9]
o
=
10.00% |
0.00%
016 017 018 019 020 021 022 023 024 025
weight

Fig. 3 The weight distribution of latent models

This is because in the decomposition of user ratings, we utilized the same predictive model
and the same weight calculation formula. As a result, weights of different models are close
to each other. The rating prediction results in Table 3 show that our method is superior to
existing approaches, which implies the rationality of the weight distribution. Users might
have similar ratings on different criteria.

4.3.2 The performance of LCR

Meanwhile, we compared our method with state-of-the-art approaches. The results are pre-
sented in Table 3, where it can be seen that our method enjoys the best predictive accuracy

@ Springer

J. Chen et al.

Table 3 The accuracy of recommendation methods with respect to RMSE with the standard error shown
within the brackets

MovieLens Douban Movietweetings Epinions Goodreads

SlopOne 0.9024 (.0013) 0.7266 (.0005) 1.3266 (.0043) 0.3627 (.0008) 0.8602 (.0003)

BMF 0.8786 (.0014) 0.7303 (.0003) 1.3301 (.0073) 0.3691 (.0006) 0.8580 (.0002)
MBMF 0.8774 (.0019) 0.7303 (.0003) 1.3002 (.0065) 0.3690 (.0006) 0.8567 (.0005)
NMF 0.9322 (.0026) 0.7458 (.0065) 1.4067 (.0069) 0.4071 (.0005) 0.8959 (.0004)
PMF 0.8875 (.0018) 0.7371 (.0012) 1.4312 (.0032) 0.3908 (.0029) 0.8737 (.0016)
BPMF 0.8786 (.0015) 0.7227 (.0002) 1.4064 (.0032) 0.3752 (.0009) 0.8590 (.0002)
SVD++ 0.8729 (.0021) 0.7266 (.0005) 1.3211 (.0059) 0.3672 (.0007) 0.8535 (.0006)
LDCC 0.9387 (.0066) 0.7472 (.0009) 1.4413 (.0040) 0.3820 (.0019) 0.8883 (.0003)
BUCM 0.9605 (.0057) 0.7775 (.0008) 1.4711 (.0295) 0.3910 (.0116) 0.9404 (.0010)
LCR 0.8653 (.0008) 0.7191 (.0001) 1.2937 (.0005) 0.3619 (.0001) 0.8422 (.0005)

Bold values indicate the best results

in all datasets. Its worth mentioning that the benchmark method SlopOne outperforms some
matrix factorization-based methods in Douban and Epinions datasets. It may be caused by
the sparsity of datasets [65]. Those matrix factorization-based methods require adequate data
for training to generate accurate recommendations. Nevertheless, our method is better than
SlopOne in both relatively dense and sparse datasets, which indicates that our method can
alleviate the sparsity problem of recommender systems to some extent. Motivated by the
results in Table 3, we explored the relationship between the accuracy of our method and the
sparsity of datasets further. We change the sparsity of training set from 50 to 90% of the
original data. Since different divisions of the dataset may have an influence on the sparsity
of the training set, we run recommendation approaches based on one instance of training set
and test set to eliminate the impact of different data partitions on the results. The results are
presented in Fig. 4, in which the x-axis denotes the ratio of the training set to the whole dataset
(training size) and the y-axis is the accuracy of algorithms running on the corresponding train-
ing set. For MovieLens, Douban and Goodreads datasets, the improvement in our method is
more significant when taking into account fewer ratings. However, for Movietweetings and
Epinions datasets, we have obtained a contrary result that the improvement in our method is
less significant with a smaller size of the training set.

In order to find the possible reason, we studied the user degree which is defined as the
number of items that the user has collected, as presented in Table 2. It can be seen that
Movietweetings and Epinions have smaller user degrees compared to the remaining datasets.
When the size of the training set becomes smaller, many users lack sufficient data to train an
accurate prediction model, which leads to a decrease improvement in our method. Thus, our
method could be helpful to alleviate the sparsity problem on condition that users’ data are
adequate to train a prediction model.

Our method has ¢ latent factor models, and thus, our method has ¢ times additional
parameters than the base biased matrix factorization model. For example, our method exploits
¢ vectors with k — dimension to represent a user’s preference, while BMF just applies one
vector. Therefore, the possibility of improvement in our method may be caused by introducing
the additional parameters. For this claim to be convincing, our method was compared with
matrix factorization for overall ratings but with ¢ times the number of latent factors (MBMF
in Table 3). In this way, the two approaches would share the same number of parameters, and

@ Springer

Preference modeling by exploiting latent components of ratings

MovielLens Douban
0.900 0.7300
0.892 0.7264
0.884 0.7228
@
L
=
o 0.876 0.7192
0.868 \ 0.7156
—
0.860 0.7120
50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
Training size Training size
Movietweetings Epinions
1.350 0.3720
1.338¢ 0.3688 ¢
1.326 0.3656
w
(%2}
=
o 1314 0.3624
1.302 0.3592
1.290 0.3560
50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
Training size Training size
GoodReads
0.875
0.867
0.859 —&— BMF
w
0 b —e— LCR
=
@ 0.851
0.843
0.835

50% 60% 70% 80% 90%
Training size

Fig. 4 The relationship between LCR’s accuracy and the sparsity of dataset is shown in the plots. Each plot
represents the prediction result in one dataset on RMSE. We use blue-square line and green-circle line to
denote BMF and LCR, respectively

we can see if one model learns the structure of the data better than the other. From Table 3, it
can be seen that our method outperforms MBMF, which demonstrates the rationality of our
method.

From Table 3, it can be seen that the performance of our method is close to the baseline
approaches in some datasets. In order to analyze the differences between our method and
the baseline approaches, we employ the sign test which requires few assumptions about the
distributional form of the data [4]. In the sign test, we count the number of users for whom
our proposed algorithm outperforms the baseline algorithm (7 4) and the number of users for

@ Springer

J. Chen et al.

Table 4 The significant test of the performance of algorithms

MovieLens Douban Movietweetings Epinions Goodreads

na/(ng +npg)*100%

SlopOne 71% 64% 59% 54% 62%
BMF 60% 70% 67% 69% 66%
MBMF 55% 57% 60% 68% 61%
NMF 81% 81% 77% 85% 81%
PMF 73% 74% 78% 81% 73%
BPMF 69% 61% 71% 70% 67%
SVD++ 63% 66% 54% 64% 65%
LDCC 78% T7% 77% 41% 77%
BUCM 78% 82% 77% 55% 79%
Average 70% 70% 69% 65% 70%
z* score

SlopOne 33.22 23.24 8.29 21.50 76.90
BMF 16.21 32.79 16.41 99.52 99.39
MBMF 7.23 10.52 9.65 94.23 70.43
NMF 48.61 50.52 26.56 182.80 192.50
PMF 35.20 38.61 27.35 157.66 143.35
BPMF 28.77 17.80 20.34 104.95 105.93
SVD++ 20.18 25.93 4.14 72.03 91.36
LDCC 43.21 43.43 25.73 —47.82 166.62
BUCM 43.57 51.56 26.10 27.57 182.21

whom the baseline algorithm outperforms our algorithm (np). The significance level is the
probability that our method is not truly better than the baseline method, and is estimated as
the probability of at least n4 out of n = n4 + np 0.5-probability Binomial trials succeeding,

and is given by p = (0.5)" Z?:M ﬁ When n is large, we can take advantage of normal
distribution to approximate the binomial. We then compute z* score by z* = "’i/_%f". If

|z*| < 1.96, our method and the baseline method are not significantly different with at least
95% confidence. If z* > 0, there are at least half users for whom our method outperforms
the baseline method.

The resultof n4/(na +np)*100% and z* scores are presented in Table 4. From the table,
one can see that for most users (about 60—70% on average) our proposed method outperforms
those baseline methods. There is one exception that our method is not as good as the LDCC
algorithm for the Epinions dataset. There are only about 41% users for whom our method
outperforms the LDCC method. From Table 3, the overall RMSE of our method is smaller
than the overall RMSE of LDCC method. The result is possible because we count n 4 and
np without considering the differences in RMSE scores for different users. As mentioned
before, Epinions dataset has a number of inactive users which may lack sufficient data to
train an accurate model. Moreover, Park et al. pointed out that the cluster-based method may
enjoy a better performance in the sparse dataset [66]. From the result of z* scores, it can be
seen that the differences between our method and those baseline approaches are significant
(Iz*] > 1.96).

@ Springer

Preference modeling by exploiting latent components of ratings

RMSE

RMSE

MovielLens

2 3 4 5 6 8
Number of components

Movietweetings

1.35

1.30

10

1.25
2 3 4 5 6 8

Number of components

10

Douban

2 3 4 5 6 8 10 15
Number of components

Epinions

0.40

0439I : : : : : : :

0.38

0.37

0.36
2 3 4 5 6 8 10 15

Number of components

GoodReads

BMF
LCR
SlopOne
NMF
PMF
SVD++
BUCM
LDCC

RMSE

LRLIRY

2 3 4 5 6 8 10 15
Number of components

Fig. 5 The relationship between LCR’s accuracy and the number of latent components is presented in the
plots. Each plot represents the prediction results in one dataset on RMSE. Different approaches are denoted
by different colors

4.3.3 The number of the latent components

In our method, the number of latent component is in fact a parameter, which can affect
the performance of the method if an improper value is given. Thus, we investigated the
relationship between the accuracy of our method and the number of latent components of
ratings, as shown in Fig. 5. From the figure, it can be seen that our method achieves the
best predictive accuracy when the number of the latent component equals to 5 except the
Movietweetings dataset, in which the optimal number of the latent component is 10. It is
interesting to obtain the result since ratings of Movietweetings dataset range from 1 to 10,

@ Springer

J. Chen et al.

and ratings of the remaining datasets range from 1 to 5, which mean the optimal number
of the latent component uncovered by our method equals to the maximal value of ratings
in the system. Therefore, it is quite easy to determine the optimal number of these latent
components.

4.3.4 Comparison with multi-criteria-based methods

BeerAdvocate and TripAdvisor datasets are selected to compare our method with five multi-
criteria-based methods. In both datasets, users give not only an overall rating on an item,
but also multiple ratings on different attributes (i.e., multi-criteria ratings) of the items. The
BeerAdvocate dataset allows an individual user to rate four attributes (aroma, appearance,
palate and taste) of beer, which consists of 1000 users, 3595 items and 586,826 ratings [31].
The TripAdvisor dataset was crawled by Wang et al. [67] which consists of 1725 users,
3343 items and 29,962 ratings. We filtered out those users who have rated fewer than 10
items. Our purpose is to predict overall ratings of users, and we also make use of RMSE to
measure the accuracy of algorithms. The test set contains 30% of ratings, and the remaining
ratings are used to train models. Our method only exploits overall ratings to learn parameters
in models, and those multi-criteria-based methods take advantage of both overall ratings
and multi-criteria ratings. For those methods, parameters are initialized from the Gaussian
distribution with mean O and variance 0.1. Details of these methods are given as follows:

— Multi-linear singular value decomposition (MSVD) [49] The MSVD can take full
advantages of the multi-dimensional representation capability of a higher-order tensor.
The approximation of MSVD is obtained by discarding the smallest n-mode singular
values for a given value (e.g., 0).

— Support vector regression (SVR) [46] This method firstly predicts the multiple cri-
teria rating by context-aware matrix factorization and then uses the aggregation-based
approach to build a linear hybrid of use-specific and item-specific aggregation models.

— Clustering and Regression collaborative filtering (CRCF) [68] This method takes
advantage of both clustering and regression techniques. More specifically, it employs
the principal component analysis (PCA) for dimensionality reduction and makes use
of Classification and Regression Tree (CART) and Expectation Maximization (EM) for
accuracy improvement in multi-criteria recommender systems.

— Multi-Criteria Aggregation (MA) [69] This method aggregates performance measures
over all criteria based on inferences about preferences from the decision-maker’s input
and exploits the Choquet integral of a fuzzy measure to determine a total ordering of the
subset of criteria.

— Multiple Regressions (MR) [70] This method makes use of multiple regressions to
analyze the relationship between users’ overall assessment and multi-criteria rating
dimensions. We utilize the multiple regressions method to predict the overall rating
of users by integrating the multi-criteria ratings.

The comparison results are presented in Table 5. For the BeerAdvocate dataset, our
method significantly outperforms those multi-criteria-based approaches. For the TripAd-
visor dataset, some regression-based methods (SVR, MA and MR) are better than our
method. This is because plenty of users in TripAdvisor dataset have few ratings which
make the data insufficient to train accurate models. In addition, only the overall ratings
are taken into consideration in our method. Therefore, one possible way to improve our
method is to combine those multi-criteria ratings. For instance, we can make use of those
multi-criteria ratings to train several latent models and integrate their predictive scores.

@ Springer

Preference modeling by exploiting latent components of ratings

Table 5 The performance of

. L BeerAdvocate TripAdvisor
algorithms on the multi-criteria
datasets MSVD 1.231 2.467
SVR 1.340 1.030
. . CRCF 1.213 1.533
The dimensions (ky, k2, k3) of
the matrix S in MSVD are 100, MA 0.600 1.030
100 and 5, respectively. The MR 0.648 1.090
cluster number of CRCF method LCR 0.571 1.297

issetto5

Table 6 The running time of LCR, in seconds. We compare the running time of LCR to its base model BMF

BMF LCR? LCR3 LCR* LCR? LCR3 (parallel)
MovieLens 24.0 80.6 111.4 143.3 184.8 64.6
Douban 48.9 173.5 234.2 327.4 400.9 116.9
Movietweetings 6.9 24.5 31.6 40.5 50.3 17.2
Epinions 167.6 576.8 813.7 1131.1 1327.6 472.4
Goodreads 574.2 1717.6 2387.8 3003.5 3482.2 1592.5

The number of components for LCR is denoted by the superscript, for example, LCR? denoted LCR with
three components

4.3.5 The complexity of LCR

As mentioned above, the running time of our method grows linearly with the traditional
matrix factorization. It can be found in Table 6 the comparison between the running time
of LCR and its based model BMF. As it is mentioned in Sect. 3, the LCR model requires
rating decomposition and retraining to accomplish its life cycle. In rating decomposition,
LCR requires a minimization process by Eq. 6 to learn the weight of each component, which
consumes one BMF time. In retraining, LCR needs to retrain all desired latent component
models with Eq. 11. For each latent component model, LCR needs one BMF time. It turns
out that the running time of LCR is approximately 1 4+ C times to the standard matrix
factorization model, where C is the number of desired latent components. The 1 + C times
ratio can be reflected by our running time experiments. In Table 6, taking LCR>(with 5 latent
components), for example, the running time of LCR is approximately six to seven times to
the running time of BMF in all datasets. In practice, the running time ratio might exceed a bit
due to the normalization for the weight of components during the operation of algorithms in
Eqgs. 7, 9 and 10. Thus, it is verified that the running time of our model grows linearly with
the traditional matrix factorization. As a matter of fact, the retraining process in our method
can be executed in parallel since those latent models are independent to each other. We test
LCR? (with 5 latent components) and the running time is given in the last column of Table 6.
It can be seen that the running time of our method is significantly decreased.

5 Conclusion

In this paper, it is assumed that a user’s evaluation on items relies on several criteria, and
her explicit ratings can be decomposed into different latent components. To determine the

@ Springer

J. Chen et al.

latent components, a new recommendation approach, called LCR, was proposed, which
made use of cost-sensitive learning strategy to train several latent models simultaneously
and recorded the weight of each model according to their predictive error. By exploiting the
weight of models, an individual rating is finally decomposed into several latent components.
Those latent components are then used again to retrain the latent models. Finally, we linearly
combine the latent model to generate the final rating of a given user.

When we study the weight of models, it is found that the weight of the model is relatively
close. For example, when a rating is decomposed into five latent components, the weight of
each model is close to 0.2. We compared the latent rating uncovered by our method with
the real multi-criteria rating data (Beeradvocate.com) [31], and it is found that there is a
significant difference between them. One possible reason is that before the training, all latent
models are treated equally in our method. As a result, their weights are close to each other.
Therefore, one possible way to improve our method is treating those latent models differently.
For instance, we can utilize different ways to compute weights of different models. Moreover,
to simplify the computation, those latent factor models are supposed to be independent to
each other and are trained simultaneously. In the future work, the situation that latent models
are dependent to each other will be considered. Then, potential approaches such as collective
matrix factorization [71] and transfer learning [72] can be taken into account.

In our method, the number of latent component is in fact a parameter, which can affect
the performance of the method if an improper value is given. It is found that the optimal
number of the latent component uncovered by our method equals to the maximal value of
ratings in the system. Thus, it is quite easy to determine the optimal number of latent models,
which indicates that our method is not sensitive to the number of latent components. There
may be varied reasons for this result. One possible reason may be that our method averages
predictive scores over several latent models, which may eliminate the fluctuations caused by
one single model to some extent. When the number of models equals to the maximal value
of the rating, the elimination effect reaches a maximum. Another possible reason may be
that individual users have several criteria in mind and the number of criteria is related to the
range of the rating. For instance, if the maximal value of a rating is set to 5, users may choose
five criteria in mind when they evaluate an item. If this assumption holds true, our method
may be helpful to determine the range of a rating. We will investigate this issue in our future
work.

In the paper, we compared our method with some multi-criteria-based approaches. For the
relatively sparse dataset, some regression-based methods are better than our method since
they take into account more information than our method. This result provides a potential
way to improve our method. As a matter of fact, our method can be well extended to the
multi-criteria recommender system. The explicit rating of users on varied criteria can be used
to train a better predictive model. We will try this method in our future work.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(61502078) and Scientific Research start-up Foundation (ZYGX2015KYQDO073).
References

1. Nilashi M, Ob Ibrahim, Ithnin N (2014) Multi-criteria collaborative filtering with high accuracy using
higher order singular value decomposition and Neuro-Fuzzy system. Knowl Based Syst 60:82-101

2. Nilashi M, Jannach D, Ob Ibrahim, Ithnin N (2015) Clustering- and regression-based multi-criteria col-
laborative filtering with incremental updates. Inf Sci 293:235-250

@ Springer

Preference modeling by exploiting latent components of ratings

20.

21.

22.

23.

24.

25.

26.

27.

28.

Adomavicius G, Kwon Y (2007) New recommendation techniques for multicriteria rating systems. IEEE
Intell Syst 22(3):48-55

Ricci F, Rokach L, Shapira B (2011) Recommender systems handbook

Plantie M, Montmain J, Dray G (2005) Movies recommenders systems: automation of the information and
evaluation phases in a multi-criteria decision-making process. In: International conference on database
and expert systems applications, Copenhagen, Denmark, pp 633-644

Matsatsinis NF, Samaras AP (2001) MCDA and preference disaggregation in group decision support
systems. Eur J Oper Res 130(2):414-429

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):866-883

Deshpande M, Karypis G (2004) Item-based top-N recommendation algorithms. ACM Trans Inf Syst
22(1):143-177

Hill WC, Stead L, Rosenstein M, Furnas GW (1995) Recommending and evaluating choices in a virtual
community of use. In: Proceedings of the SIGCHI conference on human factors in computing systems,
Denver, Colorado, USA, pp 194-201

Hofmann T (2003) Collaborative filtering via gaussian probabilistic latent semantic analysis. In: Proceed-
ings of the 26th annual international ACM SIGIR conference on research and development in information
retrieval, Toronto, Canada, pp 259-266

. Blei MD, Ng AY, Jordan MI (2003) Latent Dirichlet allocation.] Mach Learn Res 3(1):993-1022

Salakhutdinov R, Mnih A, Hinton GE (2007) Restricted Boltzmann machines for collaborative filtering.
In: Proceedings of the 24th international conference on machine learning, Corvallis, Oregon, USA, pp
791-798

Tang J, Wu S, Sun J, Su H (2012) Cross-domain collaboration recommendation. In: Proceedings of the
18th ACM SIGKDD international conference on knowledge discovery and data mining, Beijing, China,
pp 1285-1293

Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture for
collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on computer supported
cooperative work, Chapel Hill, NC, USA, pp 175-186

Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J (1997) GroupLens: applying collab-
orative filtering to usenet news. Commun ACM 40(3):77-87

Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering.
IEEE Internet Comput 7(1):76-80

LiuL,MehN, jiev, Xu D (2011) Multi-criteria service recommendation based on user criteria preferences.
In: Proceedings of the Sth ACM conference on recommender systems, Chicago, IL, USA, pp 77-84
Algadah F, Reddy CK, Hu J, Algadah HF (2015) Biclustering neighborhood-based collaborative filtering
method for top-n recommender systems. Knowl Inf Syst 44(2):475-491

Breese JS, Heckerman D, Kadie CM (1998) Empirical analysis of predictive algorithms for collabora-
tive filtering. In: Proceedings of the 14th conference on uncertainty in artificial intelligence, Madison,
Wisconsin, USA, pp 43-52

Koren Y, Bell RM, Volinsky C (2009) Matrix factorization techniques for recommender systems. IEEE
Comput 42(8):30-37

Ruslan S, Andriy M (2007) Probabilistic matrix factorization. In: Proceedings of the 20th international
conference on neural information processing systems, Vancouver, BC, Canada, pp 1257-1264
Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix factorization using Markov chain Monte
Carlo. In: Proceedings of the 25th international conference on machine learning, Helsinki, Finland, pp
880-887

Lee J, Kim S, Lebanon G, Singer Y (2013) Local low-rank matrix approximation. In: Proceedings of the
30th international conference on machine learning, Atlanta, GA, USA, pp 8§2-90

FuY, Liu B, Ge Y, Yao Z, Xiong H (2014) User preference learning with multiple information fusion for
restaurant recommendation. In: Proceedings of the 2014 SIAM international conference on data mining,
Philadelphia, Pennsylvania, USA, pp 470478

Kannan R, Ishteva M, Park H (2014) Bounded matrix factorization for recommender system. Knowl Inf
Syst 39(3):491-511

Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In:
Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining,
Las Vegas, Nevada, USA, pp 426434

Joonseok L, Samy B, Seungyeon K, Guy L, Yoram S (2014) Local collaborative ranking. In: Proceedings
of the 23rd international conference on world wide web, Seoul, Republic of Korea, pp 85-96

Koren Y (2010) Collaborative filtering with temporal dynamics. Commun ACM 53(4):89-97

@ Springer

J. Chen et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SI.

52.

Chua FCT, Oentaryo RJ, Lim E (2013) Modeling temporal adoptions using dynamic matrix factorization.
In: IEEE 13th international conference on data mining, Dallas, TX, USA, pp 91-100

Zhang C, Wang K, Yu H, SunJ, Lim E (2014) Latent factor transition for dynamic collaborative filtering.
In: Proceedings of the 2014 SIAM international conference on data mining, Philadelphia, Pennsylvania,
USA, pp 452-460

McAuley JJ, Leskovec J (2013) From amateurs to connoisseurs: modeling the evolution of user expertise
through online reviews. In: Proceedings of the 22nd international conference on world wide web, Rio de
Janeiro, Brazil, pp 897-908

Li X, Cong G, Li X, Pham TN, Krishnaswamy S (2015) Rank-GeoFM: a ranking based geographical
factorization method for point of interest recommendation. In: Proceedings of the 38th international ACM
SIGIR conference on research and development in information retrieval, Santiago, Chile, pp 433-442
Zhang J, Chow C (2015) GeoSoCa: exploiting geographical, social and categorical correlations for
point-of-interest recommendations. In: Proceedings of the 38th international ACM SIGIR conference
on research and development in information retrieval, Santiago, Chile, pp 443-452

Gao H, Tang J, Hu X, Liu H (2015) Content-aware point of interest recommendation on location-based
social networks. In: Proceedings of the 29th AAAI conference on artificial intelligence, Austin, Texas,
pp 1721-1727

Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) GeoMF: joint geographical modeling and matrix fac-
torization for point-of-interest recommendation. In: Proceedings of the 20th ACM SIGKDD international
conference on knowledge discovery and data mining, New York, NY, USA, pp 831-840

Qian X, Feng H, Zhao G, Mei T (2014) Personalized recommendation combining user interest and social
circle. IEEE Trans Knowl Data Eng 26(7):1763-1777

Chaney AJ, Blei DM, Eliassi-Rad T (2015) A probabilistic model for using social networks in personalized
item recommendation. In: Proceedings of the 9th ACM conference on recommender systems, Vienna,
Austria, pp 43-50

Zhao Z, Zhang L, He X, Ng W (2015) Expert finding for question answering via graph regularized matrix
completion. IEEE Trans Knowl Data Eng 27(4):993-1004

Shen Y, Jin R (2012) Learning personal + social latent factor model for social recommendation. In:
Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining,
Beijing, China, pp 1303-1311

Jannach D, Karakaya Z, Gedikli F (2012) Accuracy improvements for multi-criteria recommender sys-
tems. In: Proceedings of the 13th ACM conference on electronic commerce, Valencia, Spain, pp 674—689
Leung CW, Chan SC, Chung F (2006) A collaborative filtering framework based on fuzzy association
rules and multiple-level similarity. Knowl Inf Syst 10(3):357-381

Mikeli A, Sotiros D, Apostolou D, Despotis DK (2013) A multi-criteria recommender system incorpo-
rating intensity of preferences. In: 4th international conference on information, intelligence, systems and
applications, Piraeus, Greece, pp 1-6

Manouselis N, Costopoulou C (2007) Experimental analysis of design choices in multiattribute utility
collaborative filtering. Int J Pattern Recognit Artif Intell 21(2):311-331

Lee H, Teng W (2007) Incorporating multi-criteria ratings in recommendation systems. In: IEEE inter-
national conference on information reuse and integration, Las Vegas, Nevada, pp 273-278

Naime RK, Sasan AH (2017) A hybrid multi-criteria recommender system using ontology and neuro-
fuzzy techniques. Electron Commer Res Appl 21(C):50-64

Zheng Y (2017) Criteria chains: a novel multi-criteria recommendation approach. In: 22nd international
conference on intelligent user interfaces, Limassol, Cyprus, pp 29-33

Mehrbakhsh N, Bin IO, Norafida I (2014) Hybrid recommendation approaches for multi-criteria collab-
orative filtering. Expert Syst Appl 41(8):3879-3900

Sahoo N, Krishnan R, Duncan G, Callan JP (2006) Collaborative filtering with multi-component rating for
recommender systems. In: Proceedings of the 16th workshop on information technologies and systems,
Dublin, Republic of Ireland

Li Q, Wang C, Geng G (2008) Improving personalized services in mobile commerce by a novel multicri-
teria rating approach. In: Proceedings of the 17th international conference on world wide web, Beijing,
China, pp 1235-1236

Nilashi M, Ibrahim OB, Ithnin N, Zakaria R (2015) Hybrid recommendation approaches for multi-criteria
collaborative filtering. Soft Comput 19(11):3173-3207

McAuley JJ, Leskovec J, Jurafsky D (2012) Learning attitudes and attributes from multi-aspect reviews.
In: the 12th IEEE international conference on data mining, Brussels, Belgium, pp 1020-1025

Pozo M, Chiky R, Metais E (2016) Enhancing collaborative filtering using implicit relations in data.
Lectures Notes Comput Sci 9655:125-146

@ Springer

Preference modeling by exploiting latent components of ratings

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Arkadiusz P (2007) Improving regularized singular value decomposition for collaborative filtering. In:
Proceedings of KDD cup and workshop, San Jose, CA, USA, pp 39-42

Guo G, Zhang J, Sun Z, Yorke-Smith N (2015) LibRec: A Java Library for Recommender Systems. In:
Posters, demos, late-breaking results and workshop proceedings of the 23rd conference on user modelling,
adaptation and personalization, Dublin, Ireland

Guo G, Zhang J, Yorke-Smith N (2015) TrustSVD: collaborative filtering with both the explicit and
implicit influence of user trust and of item ratings. In: Proceedings of the 29th AAAI conference on
artificial intelligence, Austin, Texas, USA, pp 123-129

Karumur RP, Nguyen TT, Konstan JA (2016) Exploring the value of personality in predicting rating
behaviors: a study of category preferences on MovieLens. In: Proceedings of the 10th ACM conference
on recommender systems, Boston, MA, USA, pp 139-142

Huang J, Cheng X, Shen H, Zhou T, Jin X (2012) Exploring social influence via posterior effect of word-
of-mouth recommendations. In: Proceedings of the 5th international conference on web search and web
data mining, Seattle, WA, USA, pp 573-582

Simon D, Toon DP, Luc M (2013) Movietweetings: a movie rating dataset collected from twitter. In:
workshop on Crowdsourcing and human computation for recommender systems, Vienna, Austria, pp 43
Zeng W, Zeng A, Liu H, Shang MS, Zhou T (2014) Uncovering the information core in recommender
systems. Sci Rep 4:6140

Shang MS, Lu L, Zhang YC, Zhou T (2010) Empirical analysis of web-based user-object bipartite net-
works. Europhys Lett 90(4):48006

Lemire D, Maclachlan A (2005) Slope one predictors for online rating-based collaborative filtering. In:
Proceedings of the 2005 SIAM international conference on data mining, Newport Beach, CA, USA, pp
471-475

Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: Proceedings of the 13th
international conference on neural information processing systems, Denver, CO, USA, pp 556-562
Wang P, Domeniconi C, Laskey KB (2009) Latent Dirichlet Bayesian co-clustering. In: Proceedings of the
European conference on machine learning and knowledge discovery in databases: Part II, Bled, Slovenia,
pp 522-537

Barbieri N, Costa G, Manco G, Ortale R (2011) Modeling item selection and relevance for accurate
recommendations: a bayesian approach. In: Proceedings of the 5th ACM conference on recommender
systems, Chicago, IL, USA, pp 21-28

Fidel C, Victor C, Fernandez D, Formoso V (2011) Comparison of collaborative filtering algorithms:
limitations of current techniques and proposals for scalable, high-performance recommender systems.
ACM Trans Web 5(1):2:1-2:33

Park YJ, Tuzhilin A (2008) The long tail of recommender systems and how to leverage it. In: Proceedings
of the 2008 ACM conference on recommender systems, Lausanne, Switzerland, pp 11-18

Wang H, Lu Y, Zhai C (2011) Latent aspect rating analysis without aspect keyword supervision. In:
Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining,
San Diego, CA, USA, pp 618-626

Nilashi M, Esfahani MD, Roudbaraki MZ, Ramayah T, Ibrahim O (2016) A multi-criteria collaborative
filtering recommender system using clustering and regression techniques. J Soft Comput Decis Support
Syst 3(5):24-30

Fomba S, Zarate P, Kilgour M, Camilleri G, Konate J, Tangara F (2016) A recommender system based
on multi-criteria aggregation. In: 2nd international conference on decision support systems technology—
EURO working group on decision support systems, Plymouth, UK, pp 1-7

Fuchs M, Zanker M (2012) Multi-criteria ratings for recommender systems: an empirical analysis in the
tourism domain. In: 13th international conference on electronic commerce and web technologies, Vienna,
Austria, pp 100-111

Singh AP, Gordon GJ (2008) Relational learning via collective matrix factorization. In: Proceedings of
the 14th ACM SIGKDD international conference on knowledge discovery and data mining, Las Vegas,
Nevada, USA, pp 650-658

Jialin PS, Qiang Y (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345-1359

@ Springer

J. Chen et al.

@ Springer

Junhua Chen received his B.Sc. degree at school of Computer Science
and Engineering from University of Electronic Science and Technology
of China (UESTC) in 2015 and he studied in a postgraduate program
under the supervision of professor Wei Zeng in UESTC. Currently,
Chen serves one-year internship at Tencent and focuses on the research
of session-based recommendation. His research interests are recom-
mender systems, point process and deep probabilistic models.

Wei Zeng received his Ph.D. degree at the University of Electronic Sci-
ence and Technology of China, Chengdu, China, in 2015. Currently,
he is an associate professor of Department of Computer Science at
University of Electronic Science and Technology of China. He vis-
ited Department of Computer Science at Hong Kong Baptist University
and Physics Department at University of Fribourg in 2011 and 2012,
respectively. His main research interests include the data mining, net-
work science and recommender systems.

Junming Shao received his Ph.D. degree with highest honor (Summa
Cum Laude) at the University of Munich, Germany, in 2011. He
became the Alexander von Humboldt Fellow in 2012. Currently, he is
professor of Computer Science at the University of Electronic Science
and Technology of China. His research interests include data mining
and neuroimaging. He not only published papers on top-level data min-
ing conferences like KDD, ICDM, SDM (two of those papers have won
the Best Paper Award), but also published data mining-related inter-
disciplinary work in leading journals including Brain, Neurobiology of
Aging, and Water Research.

Preference modeling by exploiting latent components of ratings

Ge Fan is a M.Sc. student at school of Computer Science and Engi-
neering, University of Electronic Science and Technology of China.
In 2016, he obtained his B.Sc. degree in Information and Computing
Science and B.B.M. degree in Financial Management from Sichuan
Agricultural University, China. His research interests include Machine
learning, Data Mining and Recommender Systems. He received the
First-Class Award from China Postgraduate Mathematic Contest in
Modeling. He also received the First-Class Academic Scholarship,
Excellent Program Award and special Contest Award from UESTC and
SAU.

@ Springer

	Preference modeling by exploiting latent components of ratings
	Abstract
	1 Introduction
	1.1 Intuitive preference model
	1.2 Predictive performance

	2 Related works
	2.1 Single-criterion recommender systems
	2.2 Multi-criteria recommender systems
	2.3 Limitations of related works

	3 Latent components of ratings
	3.1 The problem statement
	3.2 Latent factor models
	3.3 Rating decompositions
	3.4 Models retraining
	3.5 Rating predictions

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison models
	4.3 Results and analysis
	4.3.1 The weights of models
	4.3.2 The performance of LCR
	4.3.3 The number of the latent components
	4.3.4 Comparison with multi-criteria-based methods
	4.3.5 The complexity of LCR

	5 Conclusion
	Acknowledgements
	References

