
Hallucination Detection: Robustly Discerning Reliable Answers in
Large Language Models

Yuyan Chen∗
chenyuyan21@m.fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
Shanghai, China

Qiang Fu†
qifu@microsoft.com

Microsoft
Beijing, China

Yichen Yuan
axclbkj@gmail.com

Shanghai Key Laboratory of Data
Science

Shanghai, China

Zhihao Wen
zhwen.2019@phdcs.smu.edu.sg

Singapore Management University
Singapore, Singapore

Ge Fan
ge.fan@outlook.com

Tencent
Shenzhen, China

Dayiheng Liu
liudayiheng.ldyh@alibaba-inc.com

DAMO Academy
Hangzhou, China

Dongmei Zhang
dongmeiz@microsoft.com

Microsoft
Beijing, China

Zhixu Li†
zhixuli@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
Shanghai, China

Yanghua Xiao†
shawyh@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University, Fudan-Aishu
Cognitive Intelligence Joint Research

Center
Shanghai, China

ABSTRACT
Large Language Models (LLMs) have gained widespread adoption
in various natural language processing tasks, including question
answering and dialogue systems. However, a major drawback of
LLMs is the issue of hallucination, where they generate unfaithful
or inconsistent content that deviates from the input source, leading
to severe consequences. In this paper, we propose a robust dis-
criminator named RelD to effectively detect hallucination in LLMs’
generated answers. RelD is trained on the constructed RelQA, a
bilingual question-answering dialogue dataset along with answers
generated by LLMs and a comprehensive set of metrics. Our exper-
imental results demonstrate that the proposed RelD successfully
detects hallucination in the answers generated by diverse LLMs.
Moreover, it performs well in distinguishing hallucination in LLMs’
generated answers from both in-distribution and out-of-distribution
datasets. Additionally, we also conduct a thorough analysis of the
types of hallucinations that occur and present valuable insights.
This research significantly contributes to the detection of reliable
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answers generated by LLMs and holds noteworthy implications for
mitigating hallucination in the future work.
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1 INTRODUCTION
Large languagemodels (LLMs) have revolutionized various fields [78],
including logical reasoning [3, 40], question answering [48], code
generation [30], and vertical domains [42]. However, LLMs en-
counter numerous challenges that hinder their optimal performance.
These challenges include the inability to update knowledge in real-
time [9], the lack of genuine emotion and thought [7], and the gen-
eration of long-winded and verbose answers [28], among others.
Notably, one of the most critical failures is the presence of factual
errors in the generated text [5], which gives rise to “Hallucinations”
as depicted in Fig 1. The existence of such “Hallucinations” poses
a severe hindrance to the widespread adoption of LLMs in non-
chatbot scenarios, particularly in domains like medicine and finance
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Figure 1: The given answer, produced by ChatGPT, exhibits “Hallucinations”
by incorrectly treating “Shuren Zhou” and “Xun Lu” as separate individuals,
despite they referring to the same person.

where factual accuracy is crucial. The potential risks associated
with erroneous information can lead to significant economic losses
or even jeopardize human safety [1]. Consequently, the elimination
of factual errors in LLMs has become an essential requirement in
both industry and academia.

The issue of hallucinations in natural text generation has long
been acknowledged by researchers [27, 35, 37], and the causes of
these hallucinations are complex and multifaceted. On one hand,
the large-scale data corpus employed for training LLMs unavoid-
ably contains some erroneous information, which gets learned
and stored in the model parameters [45, 54, 59]. Consequently,
when generating text, LLMs tend to prioritize their parameterized
knowledge, thereby resulting in the production of hallucinatory
content [44]. On the other hand, the decoder component of LLMs
is typically trained using maximum likelihood estimation [4, 56].
During training, ground-truth serves as the input prefix for predict-
ing subsequent tokens. However, during inference, the next token
is predicted based on the generated history sequence [23]. This dis-
crepancy in the prediction process makes it easier for hallucinations
to occur.

Existing research on detecting hallucinations of LLMs’ gen-
erated answers primarily encompasses statistical, model-based,
and human-based evaluations [27, 34]. Statistical evaluation in-
volves direct calculation of vocabulary matching between the gen-
erated text and reference target text, employing metrics such as
ROUGE [38] and BLEU [51]. Some studies also utilize the Knowl-
edge F1 (KF1) [65] metric to reduce knowledge hallucination in
state-of-the-art chatbots. This KF1 metric is particularly suitable
for detecting hallucinations in knowledge dialogue scenarios. Addi-
tionally, Shen et al. [64] conduct a large-scale assessment, including
correctness and unanswerable question identification, to evaluate
ChatGPT’s reliability in generic question-answering scenarios. Ye
et al. [76] undertake a preliminary study to assess the robustness,
consistency, and credibility of LLM systems. However, these metrics
rely on vocabulary matching and surface-level metrics, which may
not capture semantic coherence or accurately detect hallucinations.
Model-based evaluation defines the hallucination score based on the
entailment probability between the source text and the generated
text. This involves judging whether a hypothesis (i.e., generated
text) is entailed by the premise (i.e., reference text). Model-based
evaluation incorporates various metrics, including Information Ex-
traction (IE)-based metrics, QA-based metrics [16, 63, 70], Natural
Language Inference (NLI) metrics [17, 18, 25], Faithfulness Clas-
sification metrics [25, 41, 79], and LM-based metrics [19, 67]. For
example, Honovich et al.[25] employ the Q2 method of QA sys-
tems to assess the consistency between the response and external
knowledge. Azaria et al.[2] utilize the internal state and hidden

layer activations of LLMs to detect the truthfulness of generated
statements. However, these methods lack a comprehensive set of
metrics to effectively balance the advantages and disadvantages of
different evaluation criteria. As a result, models often rely heavily
on single labels without considering a broader range of factors.
Human-based evaluation involves scoring hallucinatory text or di-
rectly comparing it with the ground truth [61, 65], which inevitably
increases research costs.

To address these limitations and achieve a more balanced ap-
proach, we combine automatic metrics with model-based evalua-
tion, which aims to align with trends observed in human evaluation
scores [33]. Therefore, in this work, we focus on building a robust
discriminator, RelD, which is trained on the constructed RelQA, a
bilingual question-answering dialogue dataset along with answers
generated by LLMs and a comprehensive set of metrics, in order to
effectively detect hallucinations in the generated answers of LLMs.
Specifically, the RelQA dataset comprises 274,426 samples, encom-
passing diverse sources such as Wikipedia, Baidu Zhidao, Bing
user queries, and Chinese high school reading comprehension, etc.
These datasets cover a range of domains includingWikipedia, news,
education, and stories, utilizing various formats such as extractive
reading comprehension and multiple-choice questions. To compre-
hensively evaluate LLMs’ generated answers in the RelQA dataset,
we adopt a set of comprehensivemetrics, including LLM-assessment
metrics, human metrics, machine metrics, and composite metrics.
Additionally, we introduce a novel and robust discriminator, RelD,
which is trained on RelQA, to detect hallucinations and analyze
the types of them present in the generated answers of LLMs. Our
experimental results demonstrate that RelD performs admirably
in detecting hallucinations across diverse LLMs and for both in-
distribution and out-of-distribution datasets. Our contributions in
this paper can be outlined as follows:

• We design a novel and robust discriminator RelD, which
aims to detect hallucinations in the generated answers of
various LLMs.

• In order to train RelD, we construct RelQA, a bilingual question-
answering dialogue dataset along with answers generated
by LLMs and a comprehensive set of metrics, including LLM-
assessment metrics, human metrics, machine metrics, and
composite metrics.

• Our experimental results demonstrate that the discrimina-
tor RelD effectively detects hallucinations in the answers
generated by different LLMs, exhibiting proficiency in both
in-distribution and out-of-distribution datasets. Addition-
ally, we make detailed analysis for types of hallucinations
and provide valuable insights into the underlying causes of
hallucination.

2 DATA CONSTRUCTION
In this section, we present the process of constructing RelQA. We
begin by using questions from various existing nine datasets as
inputs to different LLMs to generate corresponding answers. Next,
we design a comprehensive set of metrics to evaluate the reliabil-
ity of these generated answers. The combined collection of the
original nine datasets, the generated answers by LLMs, and the
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evaluation metrics is referred to as RelQA. RelQA is used to train a
discriminator RelD.

2.1 DATA COLLECTION
RelQA consists of nine sub-datasets: SQuAD [55], DuReader [24],
HotpotQA [75],MSMARCO [46], NewsQA [69], QuAC [11], CoQA [58],
TriviaQA-Web [29], and TriviaQA-Wikipedia [29]. The detailed col-
lecting steps are as follows:

Step 1 (Dataset Selection): These datasets are selected due to
their unique characteristics, diverse sources, and the enrichment
they bring to the overall collection. They cover extractive read-
ing comprehension (ERC), multiple-choice (MC), and multi-turn
dialogues (MTD) categories. They originate from sources such as
Wikipedia, Baidu Zhidao, Bing search, and other platforms, while
encompassing domains such as student education, news, web arti-
cles, and general knowledge.

Step 2 (Formatting and Integration): To ensure compatibil-
ity and remove dataset boundaries, we perform formatting and
integration for all selected datasets based on the aforementioned
categories. Each dataset follows a specific standardized format, as
illustrated in Table 1 (the second column). We represent the datasets
of all categories as {𝐿𝑖 , 𝐷𝑖 }, where 𝐿𝑖 denotes a specific dataset and
𝐷𝑖 denotes its standardized format.

Step 3 (Preprocessing): To facilitate effective processing and
generation of answers, we employ preprocessing techniques on the
dataset. This involves two primary aspects: personalized prompt
instruction design and addressing the limitations associated with
long texts. For personalized prompt instruction design, we create
question-adaptive prompt instructions for each question based on
the question type, as shown in Table 1 (the third column). These
prompt instructions guide LLMs in generating better answers that
align with different types of questions. To address the challenge
of long texts, we implement a sliding window approach [31], seg-
menting the texts into smaller windows, each containing 4,000
tokens. This ensures that LLMs receive clear prompt instructions
and can effectively handle texts of varying lengths, resulting in
more accurate and contextually appropriate answers.

Step 4 (Answer Generation): We employ several powerful
LLMs, including LLaMA [68], BLOOM [62], GPT-J [71], GPT-3 [6],
and GPT-3.5 1, to generate answers for evaluation. In the case of
longer texts, we slide the window over the text and generate out-
puts for each window. The generated outputs for each window
are stored to facilitate subsequent filtering and selection of the
optimal answers. To maintain answer stability, we ask an LLM to
generate the answer three times for each question and select the
majority answer as the final answer. Furthermore, to ensure the
overall quality and reliability of the generated answers, we con-
duct quality assurance procedures, including automated checks to
identify and re-generate incomplete sentences by detecting missing
sentence-ending punctuation, among others.

2.2 METRIC SELECTION
To evaluate the reliability of LLMs’ generated answers, it is crucial
to select appropriatemetrics that capture different aspects of answer
quality.We employ four types ofmetrics, including LLM-assessment
1https://chat.openai.com/

metric, human metric, machine metric, and composite metric, to
comprehensively evaluate the generated answers.

LLM-assessment metric is inspired by the concept of LLMs’
self-evaluation, where LLMs occasionally demonstrate the ability to
assess their own output correctly without human intervention [10,
74]. This metric comprises two specific indicators: the goodness
of a generated answer and the similarity between the generated
answer and the ground-truth answer. By obtaining the goodness
score and similarity score of a generated answer, we can evaluate
its quality and how closely it aligns with the ground-truth answer.
Higher scores indicate better quality and semantic alignment. The
LLM-assessment metric provides valuable insights into the LLMs’
ability to evaluate the quality of generated answers.

Human metric plays a significant role in evaluating the LLM’s
performance from a human perspective. It includes a human score,
which is a binary label assigned to each answer based on the degree
of match between the LLM’s generated answer and the ground-
truth answer, along with the assigned goodness score. The human
metric labeling is as follows: i) When the LLM’s generated answer
is the same as the ground-truth answer and receives a goodness
score of 4 or 5, the human metric is labeled as 1. This indicates
that the LLM has successfully generated a correct and high-quality
answer that aligns with the expected answer. ii) When the LLM’s
generated answer is different from the ground-truth answer and
receives a goodness score of 1, 2, or 3, the human metric is labeled
as 2. This suggests that the LLM’s generated answer is incorrect or
of lower quality compared to the ground-truth answer. iii) For cases
where the LLM’s generated answer neither matches the ground-
truth answer nor falls within the aforementioned goodness score
ranges, the human metric is labeled as 0. This label represents a
neutral or ambiguous classification, indicating that the answer may
require further examination or subjective judgment. The human
metric captures the human perception of the LLM’s performance.

Machine metric draws inspiration from question-answering
and dialogue systems, which rely on objective metrics to assess the
quality of generated answers. It encompasses various categories,
including accuracy metrics, overlap metrics, similarity metrics, and
diversity metrics. Examples of machine metrics include F1 score,
Recall, BLEU [51], BERT score [77], ROUGE (ROUGE-1, ROUGE-
2, ROUGE-L) [38], Distinct-N (Distinct-1, Distinct-2) [36], Greedy
matching, and Embedding scores (average, extreme) [39]. Specifi-
cally, accuracy metrics assess the correctness of generated answers
compared to the ground truth, including F1 score. Overlap metrics
measure the overlap between generated answers and the ground
truth, including BLEU, Recall, ROUGE. Similarity metrics capture
the semantic similarity between generated answers and the ground
truth, including BERT score, Greedy matching and Embedding
scores (average, extreme). Diversity metrics measure the diversity
of the generated answers, including Distinct-N. These metrics ob-
jectively evaluate the semantic alignment, relevance, diversity, and
quality of generated answers, enabling a comprehensive assessment
of LLMs’ answers.

Composite metric is designed to provide a comprehensive
evaluation of a model’s performance by combining multiple aspects.
It includes a final score and a final tag to summarize the evaluation.
Each of the metrics mentioned above contributes to the final score,
with specific emphasis given to certain metrics. For instance, Recall
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Table 1: The format and prompt instuctions of three types of datasets. 𝑎𝑖 : the answer in ERC or MTD, or the correct answer in MC. 𝑎′𝑖 : the wrong answers in MC.

Type Format Prompt instruction

ERC 𝐷𝑖 = {𝑐𝑖 , 𝑞𝑖 , 𝑎𝑖 } Given the following context 𝑐𝑖 and the question 𝑞𝑖 . Please provide the answer.
MC 𝐷𝑖 = {𝑐𝑖 , 𝑞𝑖 , 𝑎𝑖 , 𝑎′𝑖 } Given the following context 𝑐𝑖 and the question 𝑞𝑖 . Please select the best answer from the candidate answers {𝑎𝑖 , 𝑎′𝑖 }.
MTD 𝐷𝑖 = {ℎ𝑖 , 𝑞𝑖 , 𝑎𝑖 } Given the history conversation ℎ𝑖 and the current question 𝑞𝑖 . Please provide the answer.

Table 2: The distribution of each dataset in RelQA on LLM-assessment
metric.

Dataset Goodness Similarity
Low Medium High Low Medium High

SQuAD 0.11% 0.42% 99.47% 33.71% 2.50% 63.8%
DuReader 2.77% 5.60% 91.63% 15.73% 34.01% 50.26%
HotpotQA 1.47% 1.35% 97.18% 37.57% 5.52% 56.9%
MSMARCO 1.62% 2.43% 95.95% 13.58% 11.53% 74.89
NewsQA 0.66% 0.91% 98.43% 21.67% 25.44% 52.89
QUAC 8.87% 8.41% 82.72% 60.28% 18.3% 21.41
CoQA 1.37% 3.08% 95.55% 18.45% 7.43% 74.13
TriviaQA-web 1.25% 0.63% 98.12% 31.18% 6.16% 62.66
TriviaQA-wiki 1.36% 0.66% 97.99% 31.36% 6.54% 62.11

Table 3: The distribution of each dataset in RelQA on Human metric.

Dataset
Human score

Reliable Unreliable Ambiguous

SQuAD 32.79% 0.49% 66.71%
DuReader 0.42% 8.31% 91.27%
HotpotQA 19.75% 2.73% 77.52%
MSMARCO 6.95% 3.99% 89.06%
NewsQA 2.09% 1.53% 96.38%
QUAC 0.81% 17.16% 82.03%
CoQA 8.08% 4.22% 87.71%
TriviaQA-web 25.77 1.75 72.49%
TriviaQA-wiki 24.29 1.87 73.84%

and ROUGE (ROUGE-1, ROUGE-2, ROUGE-L) may be assigned
higher weights (e.g., twice the weight) to highlight the importance
of maintaining information. The weights of different metrics can
be dynamically optimized to better assess their importance in real-
world scenarios as demonstrated in Experiment 4.3. The final tag is
a binary label assigned based on the average score. If the average
score is greater than 0.5, it is labeled as 1; otherwise, it is labeled
as 0. The final tag simplifies the evaluation outcome, indicating
whether the LLMs’ generated answer is considered reliable or not. In
summary, these metrics collectively evaluate the quality of answers
generated by LLMs compared to the ground-truth answers.

2.3 DATA EXPLORATORY ANALYSIS
In this section, we conduct a data exploratory analysis of the con-
structed RelQA dataset, which comprises a total of 1,372,130 sam-
ples, including generated answers by five selected LLMs. Among
these, 743,910 samples are assigned as reliable and 628,220 samples
as unreliable based on the final tag metric. We divide the possi-
ble ranges of all metrics into three equal parts, representing low,
medium, and high levels. Fig 2 illustrates the distribution of each
dataset at the high level for each metric. We also present the dis-
tributions of different datasets among various metrics as shown in
Table 2, Table 3, Table 4 and Table 5.

First, we analyze the differences in the LLM-assessment met-
ric across different datasets. Regarding the “goodness” metric, the
QUAC dataset performs poorly in terms of answer quality, with a
high score percentage of 82.72%, while the SQuAD dataset excels
in generating high-quality answers, with a high score percentage
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Figure 2: A data exploratory analysis of the constructed RelQA based on
different metrics.

of 99.47%. Other datasets generally achieve high score percent-
ages above 90%. Regarding the “similarity” metric, the MSMARCO
dataset demonstrates the highest similarity to the reference an-
swers, with a high similarity percentage of 74.89%. Conversely, the
QUAC dataset also performs poorly in terms of similarity, with a
low similarity percentage of 60.28%.

Next, we analyze the differences in the human metric across
different datasets. The proportions of reliable evaluations vary sig-
nificantly in the “human score” metric. The lowest proportion is
0.42% for DuReader-master, while the highest is 32.79% for SQuAD.
Similarly, the proportions of unreliable evaluations differ, with the
lowest being 0.49% for SQuAD and the highest being 17.16% for
QUAC. Additionally, the proportion of ambiguous evaluations is
highest for newsQA at 96.38% and lowest for QUAC at 66.71%.

Afterwards, we analyze the differences in the machine metric
across different datasets. In terms of “accuracy metrics”, the QUAC
dataset performs the worst, with a high score percentage of only
4.54%. The high score percentages for other datasets range between
4.54% and 30.8%, with a median around 20%. In terms of “overlap
metrics”, the QUAC dataset also performs poorly in terms of low
overlap, with a low score percentage of 87.52%. The low score per-
centages for other datasets range from 32.47% to 75.28%, with no
significant high scores observed overall. Regarding “similarity met-
rics”, DuReader, SQuAD, and MSMARCO perform well in terms of
high similarity scores, with the highest scores being 95.89%, 94.71%,
and 93.41% respectively. In contrast, newsQA and QUAC exhibit
lower similarity scores, with the highest scores being 66.6% and
64.13% respectively. Notably, there are consistencies between the
similarity scores in machine metrics and the similarity scores in
LLM-assessment metrics. In “diversity metrics”, QUAC, newsQA,
and MSMARCO perform well in terms of high diversity scores, with
the highest scores being 97.77%, 96.83%, and 94.97% respectively.
This is likely due to the higher question diversity in these datasets,
allowing models to exhibit more creativity and diversity in gener-
ating answers. Other datasets also maintain high diversity scores,
all above 80%.

Finally, we analyze the differences in composite evaluation met-
rics across different datasets. In terms of the “final score” metric,
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Table 4: The distribution of each dataset in RelQA on Machine metric.

Dataset Accuracy Overlap Similarity Diversity
Low Medium High Low Medium High Low Medium High Low Medium High

SQuAD 25.27% 30.03% 44.69% 32.47% 25.95% 41.58% 0.19% 5.10% 94.71% 0.00% 13.45% 86.55%
DuReader 49.35% 34.53% 16.12% 56.51% 30.81% 12.67% 0.13% 3.98% 95.89% 0.03% 5.86% 94.10%
HotpotQA 53.79% 21.49% 24.73% 60.26% 15.91% 23.83% 0.38% 20.57% 79.06% 0.00% 9.61% 90.39%
MSMARCO 33.99% 35.91% 30.09% 37.69% 35.92% 26.38% 0.19% 6.40% 93.41% 0.00% 5.03% 94.97%
NewsQA 70.53% 22.92% 6.56% 75.28% 19.04% 5.68% 1.52% 31.88% 66.60% 0.00% 3.17% 96.83%
QUAC 85.63% 9.83% 4.54% 87.52% 8.59% 3.89% 0.51% 35.36% 64.13% 0.01% 2.22% 97.77%
CoQA 56.09% 28.10% 15.81% 64.49% 22.06% 13.46% 0.54% 18.22% 81.24% 0.00% 5.77% 94.23%
TriviaQA-web 48.26% 20.93% 30.8% 54.17% 15.49% 30.34% 1.00% 20.74% 78.26% 0.00% 17.88% 82.12%
TriviaQA-wiki 47.83% 21.71% 30.46% 53.56% 16.40% 30.05% 1.06% 21.75% 77.19% 0.01% 17.73% 82.26%

Table 5: The distribution of each dataset in RelQA on Composite metric.

Dataset Final score Final tag
Low Medium High Reliable Unreliable

SQuAD 3.56% 44.01% 52.43% 78.57% 21.43%
DuReader 6.32% 67.85% 25.83% 58.57% 41.43%
HotpotQA 15.89% 56.02% 28.10% 47.75% 52.25%
MSMARCO 5.52% 51.88% 42.60% 72.29% 27.71%
NewsQA 27.65% 60.55% 11.80% 33.15% 66.85%
QUAC 50.08% 43.04% 6.88% 16.44% 83.56%
CoQA 15.43% 62.79% 21.78% 45.75% 54.25%
TriviaQA-web 17.83% 49.50% 32.67% 53.34% 46.66%
TriviaQA-wiki 19.32% 48.36% 32.33% 53.41% 46.59%

the QUAC dataset performs the worst, with a high composite score
percentage of 6.88%. Conversely, the SQuAD dataset achieves the
highest composite score, with a high percentage of 52.43%. It is evi-
dent that none of the datasets achieve particularly high composite
scores. In terms of the “final tag” metric, the SQuAD dataset exhibits
the highest proportion indicating answer reliablity, at 78.57%, while
the QUAC dataset has the lowest proportion at 16.44%. This aligns
with the human metric, as the SQuAD dataset primarily consists of
simple extractive reading comprehension, making it easier for mod-
els to generate reliable answers. On the other hand, QUAC involves
open-domain dialogue with more complex semantic understanding,
posing challenges for models to generate reliable answers.

3 DISCRIMINATOR
In this section, we introduce a novel and robust discriminator called
RelD, which is designed to assess the reliability of answers gen-
erated by LLMs. To ensure that RelD closely aligns with human
evaluation, we employ an appropriate method to train RelD and
make it fit the final score based on human evaluation. The process
of constructing RelD is illustrated in Fig. 3.

3.1 REGRESSION TO MULTI-CLASS
CLASSIFICATION

Initially, we employ a regression approach to train the discrimi-
nator RelD in order to fit the final score and align with human
evaluation. However, our experiments reveal that the regression
approach performs poorly, possibly due to the use of the mean
square error loss function. Consequently, we convert the regression
task into a classification task to improve the fitting. Specifically, In
this process, we normalize the final score into different numbers of
classes, such as four, six, eight, and ten, for multi-class classification.
For instance, we assign the first category in a four-category classi-
fication to final scores ranging from 0 to 0.25. After experiments as
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Answer: in the late 
1990s

Context: ... she 
performed in various 
singing and dancing 
competitions as a child…

Dataset

LLMs

Generate
Answers

Evaluate

Metrics

 Datasets

 LLM' generated answers:
Beyonce started becoming 
popular in the late 1990s

 Four types of metrics:
• LLM-assessment metrics
• Human metrics
• Machine metrics
• Composite metrics

RelQA

Label
（Binary）

• SQuAD
• DuReade
• HotpotQA
• MSMARCO
• NewsQA
• QUAC
• CoQA
• TriviaQA-web
• TriviaQA-wiki

Predict

Regression Multi-class Binary-class
Final 
Score

0.11

0.27

0.65

0.82

Final 
Score

1

2

3

4

Prob. Final 
Score

0.1

0.73
0.1

0.3

0.5

RelD

LLM' generated 
answers:
Beyonce started 
becoming popular in 
the late 1990s

PLM
+

Automatic
metrics

Human-in-
the-loop 
metrics

{0,1}

Figure 3: The process of building the discriminator RelD, which is trained
on the constructed dataset RelQA and used to detect hallucination of LLMs’
generated answers.

shown in Sec. 4.3, we ultimately choose a ten-class classification
approach. The theoretical foundation of this method mainly lies
in information theory and the cross-entropy loss function. Cross-
entropy is a common information theory measure used to quantify
the distance between two probability distributions. In the case of
multi-classification problems, the cross-entropy loss function is
defined as follows:

𝐿 = −
∑︁

(𝑦𝑖 · log(𝑝𝑖 )), (1)

where 𝑦𝑖 represents the true label of the 𝑖-th category, and 𝑝𝑖 repre-
sents the predicted probability of the 𝑖-th category by the discrimi-
nator RelD. Our objective is to minimize this loss function during
the training of RelD. In practice, we employ the softmax function to
convert the original output of RelD into a probability distribution.

One potential advantage of this method is that the classifica-
tion task, which focuses on distinguishing different categories, may
facilitate capturing subtle differences among the final scores. Fur-
thermore, the cross-entropy loss function exhibits greater stability
compared to the mean square error loss function when dealing with
imbalanced datasets. However, it is important to note that in certain
situations, multi-class tasks may introduce overly complex informa-
tion, leading to a notable disparity between the concepts learned by
the discriminator and human intuitive perception. For example, di-
viding a problem into five categories, such as “not reliable”, “weakly
reliable”, “moderately reliable”, “strongly reliable” and “highly re-
liable”, may surpass most people’s intuitive understanding of the
fundamental categories of “reliable” and “unreliable”.
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3.2 MULTI-CLASS TO BINARY-CLASS
CLASSIFICATION

Based on the aforementioned analysis, we further convert the multi-
class task into a binary classification task, which may better align
with human intuitive perception. Here, we present three possible
approaches for this conversion, each with its theoretical support
and definition:

Normalization. This method is based on threshold decision
theory. It involves converting all class information into binary
labels by directly normalizing the final score to 0 and 1, which
serves as the final probability value for classification. However, this
approach may result in some information loss as continuous scores
are transformed into discrete classes.

Discrete Values. This method is grounded in maximum likeli-
hood estimation, a commonly used parameter estimation technique
in statistics. Here, we consider the highest predicted probability
from the discriminator as the final probability value for classifi-
cation. For example, in a four-class classification scenario, if the
probabilities corresponding to the classes are 0.1, 0.1, 0.1, and 0.7,
respectively, we would use 0.7 as the final probability value. The
advantage of this method lies in its simplicity, although the draw-
back is that we do not know which class the maximum probability
value corresponds to.

Weighted Average Probability. The theoretical basis for this
method stems from decision theory, particularly the concept of
expected utility, which involves taking a weighted average of all
possible outcomes and their corresponding utilities (in this case,
predicted probabilities). The goal of this approach is to determine
a weighted average value that best represents the predicted prob-
abilities for each class from the discriminator. In this method, we
multiply the probability of each class predicted by the discrimi-
nator with its corresponding weight, summing them up to obtain
a final probability value. This value can then be used for binary
classification tasks. The formula for this method is as follows:

𝑝′𝑖 =
(∑𝑤𝑖 · 𝑝𝑖 ) −𝑤min

𝑤max −𝑤min
, (2)

where 𝑝𝑖 represents the probability output of the discriminator for
class 𝑖 ,𝑤𝑖 denotes the weight for class 𝑖 , and𝑤min and𝑤max are the
minimum and maximumweights, respectively. We set the threshold
to 0.5 and use the cross-entropy loss function for approximation.
It allows for a more refined fitting of regression tasks and has
demonstrated better performance compared to the previous two
methods, as indicated by Sec. 4.3.

3.3 Backbone of the Discriminator
We utilize a Pre-trained Language Model (PLM), such as ELEC-
TRA [12], as the backbone of the discriminator RelD. Through our
experiments, we have demonstrated that ELECTRA outperforms
other PLMs, including BERT [14], RoBERTa [43], and DeBERTa [22],
as indicated in Section 4.3. RelD takes questions along with contexts
and LLMs’ generated answers as input, generating a classification
label to determine the reliability of a generated answer. It uses
the weighted average probability approach to fit the ground-truth
answers.

Table 6: Performance of RelD among the selected LLMs on the validation
dataset.

LLM LLaMA BLOOM GPT-J GPT-3 GPT-3.5

Automatic 0.855 0.846 0.827 0.863 0.881
Human 0.826 0.830 0.835 0.869 0.894

Average score 0.841 0.838 0.831 0.866 0.888

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness
of RelD in detecting the reliability of LLMs’ generated answers using
both automatic metrics and human-in-the-loop metrics.

4.1 EXPERIMENTAL SETUP
The experiments are conducted using TESLAA100 GPUs for answer
generation and GTX 3090 GPUs for training RelD with PyTorch in
Python. During the training of RelD, we set the batch size to 32 and
the sequence length to 128. Hyperparameters such as weight decay
(0.01), 𝛽1 (0.9), and 𝛽2 (0.999) are maintained. The learning rate is
set to 2e-05. We train RelD for 20 epochs.

Baselines and metrics. We validate the effectiveness of the
proposed RelD on well-known LLMs, including LLaMA (LLaMA-
7B)[68], BLOOM (BLOOM-7B)[62], GPT-J (GPT-J-6B)[71], GPT-3[6],
and GPT-3.5 1. To evaluate the performance of RelD, we use accu-
racy (ACC) as the automatic metrics and ROC curve analysis with
the area under the ROC curve (AUC) as the human-in-the-loop
metrics. The automatic evaluation process utilizes the final tag as
the ground-truth label, while the human-in-the-loop evaluation
involves human ratings as the ground-truth labels. Specifically,
we randomly select 9,000 QA pairs, with 1,000 from each dataset
in RelQA, for human ratings. We enroll nine volunteers and di-
vide them into three groups to ensure evaluation stability. Each
group provides scores of 0 or 1 for the randomly selected 3,000
QA pairs. Inter-rater agreement is calculated using Krippendorff’s
Alpha (IRA) to ensure the confidence of the human ratings. For
controversial ratings with low agreement (<0.7), we discard the
corresponding QA pair and replace it with another.

4.2 MAIN RESULTS
We conduct experiments to evaluate the effectiveness of the pro-
posed RelD as follows:

Experiment 1: RelD’s Performance across Different LLMs.
We conduct ten-fold cross-validation and report the average per-
formance on the validation dataset. Based on the results presented
in Table 6, it’s observed that both the automatic and human-in-the-
loop evaluations consistently exceed 0.8 for all LLMs, with minimal
variation between different models (p<0.01). The strong correlation
between the automatic and human-in-the-loop evaluations (p<0.01)
suggests that the automatic scoring of the RelQA dataset could
largely replace human scoring. It also indicates the robustness of
RelD in detecting the reliability of different LLMs.

Experiment 2: RelD’s Performance on IID andOODDatasets
We evaluate the performance of RelD on both In-distribution (IID)
and Out-of-distribution (OOD) datasets. We randomly assign nine
datasets from RelQA to the IID and OOD sets in various ratios, such
as 1:8, 2:7, 3:6, and 4:5, and vice versa. For example, we train on 8
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Figure 4: The visualization of RelD’s performance among the selected LLMs
on the validation dataset, including both automatic and human-in-the-loop
metrics.
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Figure 5: Performance of RelD on automatic metrics (a) and human-in-the-
loop metrics (b)(c), including results on IID validation dataset (b) and OOD
dataset (c) among the selected LLMs.

datasets and validate on 1 dataset. To ensure a balanced quantity of
data in both the IID and OOD sets, we perform downsampling by
randomly selecting 3,000 samples from each dataset. Considering
that different datasets acting as IID or OOD may yield different
results, we conduct five experiments for each ratio group and pro-
vide average values along with the range of error. This approach
allows us to accurately assess the generalization ability of RelD. To
evaluate the performance on the IID dataset, we use 30% of the IID
data as a validation dataset. For the OOD evaluation, we directly
test RelD on the entire OOD dataset. The results are presented in
Table 7 and Fig. 5. We observe that when the IID ratio is set to 5
or higher, RelD consistently achieves automatic and human-in-the-
loop evaluations above 0.7 on both the IID and OOD datasets. This
indicates that RelD exhibits a strong generalization capability in
handling OOD data as well as alignment with human evaluation
predictions.

4.3 ABLATION STUDY
After that, we conduct several experiments to evaluate the effec-
tiveness of different modules in the proposed RelD. All results are
performed on the validation dataset using ten-fold cross-validation.

Experiment 3: Effectiveness of Weighted Average Proba-
bility. We compare the performance of using normalization, dis-
crete values, and weighted average probability in the conversion
from multi-class to binary-class classification in both automatic
and human-in-the-loop metrics. The results are presented in Fig. 6.
We observe that while using weighted average probability slightly
underperforms normalization in terms of automatic metrics, it sig-
nificantly outperforms normalization and discrete values in human-
in-the-loop metrics across all LLMs. Therefore, we adopt weighted
average probability as it offers a more intuitive and aligned ap-
proach from a human perspective.

Experiment 4: Optimal Number of Categories. We inves-
tigate the impact of the number of categories when converting
regression into multi-class classification. We test four categories,
six categories, eight categories, and ten categories. The results are
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lected LLMs.

four six eight ten
(a)

0.80

0.82

0.84

0.86

0.88

Au
to

m
at

ic

four six eight ten
(b)

0.82

0.84

0.86

0.88

Hu
m

an

LLaMA BLOOM GPT-J GPT-3 GPT-3.5

Figure 7: The performance of different numbers of categories in automatic
(a) and human-in-the-loop metrics (b) on the validation dataset among the
selected LLMs.

shown in Fig. 7. It is evident that a higher number of categories
leads to improved performance in human-in-the-loop metrics. This
suggests that a larger number of categories brings the classifica-
tion task closer to regression and enhances alignment with human
cognition. Consequently, we ultimately convert the regression task
into a ten-category classification task and then discern it as a binary
classification using weighted average probability.

Experiment 5: Optimizing Weights of Each Metric Relying
solely on prior knowledge to determine the weights of each metric
may not achieve the best performance. Therefore, we explore the
optimal weights for each metric. To achieve this, we calculate the
optimal weight for each metric as the weighted average of two
values: the AUC when each metric is treated as the ground-truth
compared to human evaluation, and the Pearson coefficient between
each metric and human evaluation. In our experiment, we set the
ratio for the former as 0.9 and for the latter as 0.1, as it yields the
best performance. The optimal weights of each metric are depicted
in Fig. 8(a). Subsequently, we evaluate whether the optimal weights
can enhance the performance of RelD in detecting hallucination
of LLMs’ generated answers as shown in Fig. 8(b)(c). Remarkably,
we observe improvements in both automatic (b) and human-in-the-
loop metrics (c) after optimizing the weights of each metric.

Experiment 6: Backbone Selection for RelD. We experi-
ment with different PLMs, including BERT [14], RoBERTa [43],
DeBERTa [22], and ELECTRA [12], for RelD in order to choose the
most effective backbone, as shown in Table 8. Through this com-
parison, we observe that ELECTRA achieves the best performance
in both automatic and human-in-the-loop metrics. Consequently,
we select ELECTRA as the preferred backbone for RelD.

4.4 EXPLORATORY ANALYSIS
We classify the predictions generated by RelD into four categories,
as presented in Table 9. To gain insights into the characteristics
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Table 7: Performance of RelD on IID and OOD datasets. IID results are based on a 30% validation dataset from the IID dataset, while OOD results are obtained
from the entire OOD dataset.

LLM Metrics Distribution 1 to 8 2 to 7 3 to 6 4 to 5 5 to 4 6 to 3 7 to 2 8 to 1 Average

LLaMA
Automatic IID 0.698±.021 0.723±.018 0.762±.029 0.785±.016 0.776±.012 0.806±.022 0.821±.014 0.832±.010 0.775±.018

OOD 0.672±.023 0.675±.020 0.701±.017 0.747±.011 0.735±.028 0.798±.026 0.815±.024 0.820±.013 0.745±.020
Human IID 0.550±.019 0.693±.027 0.721±.015 0.758±.010 0.763±.023 0.791±.018 0.839±.011 0.862±.025 0.747±.019

OOD 0.487±.021 0.547±.017 0.585±.029 0.634±.022 0.732±.015 0.748±.014 0.73±.027 0.744±.012 0.651±.020

BLOOM
Automatic IID 0.701±.024 0.729±.026 0.755±.013 0.790±.017 0.777±.020 0.801±.028 0.817±.016 0.827±.011 0.775±.019

OOD 0.674±.018 0.678±.021 0.705±.012 0.750±.010 0.739±.019 0.799±.016 0.817±.023 0.822±.015 0.748±.017
Human IID 0.539±.013 0.680±.014 0.695±.028 0.747±.019 0.759±.022 0.778±.024 0.834±.012 0.854±.011 0.736±.018

OOD 0.462±.0120 0.521±.011 0.546±.025 0.628±.016 0.731±.023 0.725±.017 0.732±.020 0.725±.027 0.634±.019

GPT-J
Automatic IID 0.673±.027 0.710±.015 0.757±.016 0.765±.014 0.788±.011 0.810±.029 0.831±.021 0.830±.018 0.771±.019

OOD 0.685±.016 0.677±.012 0.706±.022 0.746±.020 0.733±.011 0.795±.017 0.812±.014 0.810±.026 0.746±.017
Human IID 0.556±.019 0.660±.010 0.698±.015 0.726±.024 0.759±.022 0.778±.013 0.804±.021 0.850±.018 0.729±.018

OOD 0.451±.026 0.523±.013 0.557±.024 0.605±.012 0.731±.011 0.725±.020 0.733±.028 0.721±.023 0.631±.020

GPT-3
Automatic IID 0.706±.020 0.716±.018 0.768±.019 0.780±.010 0.769±.013 0.809±.017 0.825±.021 0.826±.016 0.775±.017

OOD 0.681±.015 0.680±.014 0.710±.010 0.753±.011 0.729±.026 0.792±.019 0.813±.012 0.815±.024 0.747±.016
Human IID 0.527±.028 0.645±.016 0.731±.010 0.745±.023 0.782±.017 0.793±.026 0.836±.015 0.897±.013 0.745±.019

OOD 0.468±.024 0.568±.018 0.612±.011 0.619±.020 0.720±.013 0.775±.012 0.756±.019 0.728±.014 0.656±.016

GPT-3.5
Automatic IID 0.711±.010 0.728±.012 0.744±.015 0.780±.014 0.790±.018 0.797±.027 0.827±.010 0.836±.021 0.777±.016

OOD 0.675±.016 0.685±.024 0.709±.010 0.735±.017 0.744±.020 0.790±.028 0.810±.016 0.824±.011 0.747±.018
Human IID 0.586±.027 0.677±.012 0.746±.013 0.797±.014 0.786±.018 0.812±.023 0.821±.012 0.880±.011 0.763±.016

OOD 0.445±.019 0.592±.015 0.721±.017 0.722±.026 0.723±.024 0.791±.010 0.791±.016 0.795±.012 0.698±.017
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Figure 8: The optimal weights of each metric (a) and the performance of
RelD with the original and optimal weights in automatic (b) and human-in-
the-loop metrics (c), respectively, on the validation dataset.

Table 8: Performance of RelD with different backbones among LLMs on the
validation dataset.

RelD Metric LLaMA BLOOM GPT-J GPT-3 GPT-3.5

BERT Automatic 0.826 0.825 0.800 0.837 0.859
Human 0.809 0.807 0.819 0.844 0.867

RoBERTa Automatic 0.848 0.834 0.812 0.839 0.873
Human 0.821 0.811 0.824 0.852 0.877

DeBERTa Automatic 0.850 0.842 0.818 0.854 0.878
Human 0.824 0.815 0.829 0.866 0.893

ELECTRA Automatic 0.855 0.846 0.827 0.863 0.881
Human 0.826 0.830 0.835 0.869 0.894

of these categories and understand the functioning of RelD, we
conduct an exploratory analysis.

Analysis 1: Distribution Analysis To analyze the distributions
within each category, we utilize boxplots (Fig.9(a)) to illustrate
key statistics such as median, quartiles, and outliers of samples.
Additionally, we employ density plots (Fig.9(b)) to visualize the
probability distribution of samples within each category. In the

Table 9: Four categories are defined based on the agreement between LLMs’
generated answers and RelD’s predictions. Q, A, P, and D represent questions,
ground-truth answers, LLMs’ generated answers, and RelD’s predictions, re-
spectively.

Category Definition Sample

1

The LLM generates
correct answers,
and RelD also predicts
them as correct.

Q: Strabismus is more commonly
known by which one-syllable word?
A: squint
P: squint
D: True

2

The LLM generates
correct answers,
but RelD predicts
them as incorrect.

Q: On which Apollo mission did
Armstrong and Aldrin land on the moon?
A: apollo 11
P: apollo 11
D: False

3

The LLM generates
incorrect answers,
but RelD predicts
them as correct.

Q: what’s the number for the metro
pcs customer care line?
A: customer care number for metro pcs is
8009016266
P: answer is 611 or 8009016266 or 8888638768
D: True

4

The LLM generates
incorrect answers,
and RelD also predicts
them as incorrect.

Q: When did freestyle skiing first became
a sport contested at the World Olympics?
A: 1992
P: 1988 as freestyle skiing was first added
as event in 1988 winter olympics
D: False

first category, the boxplot exhibits a wide range and the density
plot shows a concentrated distribution with multiple peaks. This
suggests that RelD may have some uncertainties in its predictions
for this category. For the second and third categories, the boxplot
widths fall between those of the first and fourth categories and the
density plots display more dispersed probability distributions. This
indicates that RelD is more hesitant in its predictions or has lower
proficiency in learning for these types of questions. In contrast,
the fourth category exhibits a narrower boxplot and the density
plot shows a concentrated probability distribution. It indicates that
RelD is more confident in its predictions for this category.

Analysis 2: Clustering Analysis. By applying clustering al-
gorithms to the text data, we investigate whether each category
exhibits distinct cluster centers, as illustrated in Fig. 10. For the
first category, the data distribution appears clustered and relatively
uniform, indicating consistent and accurate performance by RelD
within this category. The second category contains an extremely
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Figure 9: The distribution of samples from each category with boxplots (a)
and density plots (b). Cate: Category (The same below).
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Figure 10: Results of clustering based on four categories.
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Figure 11: The vocabulary distribution between correctly predicted samples
and incorrectly predicted samples by RelD.

small number of samples, suggesting that RelD rarely misclassifies
the correct answers generated by the LLMs. In the third category,
the clustering results reveal significant variability, indicating that
errors can occur in various aspects when RelD misclassifies the
incorrect answer as correct, such as grammar or comprehension
errors. Similarly, the fourth category displays a wide and dispersed
clustering distribution, indicating diverse performance by RelD
within this category. This suggests the presence of different types
of errors that make it challenging for RelD to detect. From the
clustering graph, we observe that RelD performs best in the first
category. However, for the second, third, and fourth categories,
the performance of RelD may be influenced by the complexity and
ambiguity of the input contexts or questions.

Analysis 3: Vocabulary Distribution. We can compare the
vocabulary distribution between correctly predicted samples and
incorrectly predicted samples by RelD, as depicted in Fig. 11. There
is a noticeable distinction between the left side (RelD predicts cor-
rectly) and the right side (RelD predicts incorrectly). It appears that
content related to “story” is relatively easy for RelD to classify cor-
rectly, while content related to “country” poses more difficulty for
RelD in accurate classification. However, it is important to note that
vocabulary alone may not be the sole determining factor for RelD’s
recognition accuracy. The critical factors might involve underlying
semantic relationships, which would necessitate further research
and investigation.

5 RELATEDWORK
Hallucination detection. Existing research primarily contains
statistical metrics [21, 66, 72], model-based metrics (including Infor-
mation Extraction (IE)-based metric, QA-based metric [25, 57, 60],
Natural Language Inference (NLI) Metrics [26, 32, 73], Faithfulness
Classification Metrics [25, 41, 79], LM-based Metrics [19, 67]), and
human-based evaluations [61, 65]. We list some typical work as
follows: Dhingra et al. [15] propose PARENT to measure hallucina-
tions using both the source and target text as references. Goyal and
Durrett [20] attempt to identify factual inconsistencies in a more
fine-grained manner with a new dependency-level entailment. Liu
et al. [41] and Zhou et al. [79] construct syntactic data by automati-
cally inserting hallucinations into training instances. Chen et al. [8]
and Nie et al. [47] use finer-grained metrics for intrinsic hallucina-
tion and extrinsic hallucination separately. Azaria et al. [2] utilize
the internal state and hidden layer activations of LLMs to detect
the truthfulness of generated statements. Ye et al. [76] consider
that errors in user-generated query input may cause unexpected
responses from LLMs.

Hallucination mitigation. There are also some work that
focus on mitigating hallucination. For example, Dale et al. [13]
and Ji et al. [27] focus on hallucination in machine translation.
Pagnoni et al. [50] address hallucination in text summarization.
Peng et al. [53] adopt various methods to prompt LLMs, including
posting multiple queries. Ouyang et al. [49] propose a method to
enhance the content generated by LLMs. Yan et al. [74] introduce an
iterative self-evaluating optimization mechanism based on prompt
engineering. Park et al. [52] leverage search results corresponding
to a user’s input query to generate an augmented query.

6 CONCLUSIONS AND FUTUREWORK
Hallucination of LLMs poses a significant challenge. In this paper,
we address this issue by proposing a robust discriminator, RelD,
trained on the constructed RelQA dataset, which is a bilingual
question-answering dialogue dataset along with generated answers
by LLMs and a comprehensive set of metrics to effectively detect hal-
lucinations in LLMs’ generated answers. Our experimental results
demonstrate the effectiveness of RelD in detecting hallucinations in
LLMs’ generated answers. Moreover, RelD exhibits strong robust-
ness and generalization capabilities, performing well on both in-
distribution and out-of-distribution datasets. These findings make
a significant contribution to the detection of reliable answers gen-
erated by LLMs and hold promising implications for future work
in mitigating hallucination.
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